Home
A JFSP Fire Science Exchange Network
Bringing People Together & Sharing Knowledge in the Northern Rockies

Inferring energy incident on sensors in low-intensity surface fires from remotely sensed radiation and using it to predict tree stem injury

Author(s): Matthew B. Dickinson, Bret W. Butler, Andrew T. Hudak, Benjamin C. Bright, Robert L. Kremens, Carine Klauberg
Year Published: 2019
Description:

Remotely sensed radiation, attractive for its spatial and temporal coverage, offers a means of inferring energy deposition in fires (e.g. on soils, fuels and tree stems) but coordinated remote and in situ (in-flame) measurements are lacking. We relate remotely sensed measurements of fire radiative energy density (FRED) from nadir (overhead) radiometers on towers and the Wildfire Airborne Sensor Program (WASP) infrared camera on a piloted, fixed-wing aircraft to energy incident on in situ, horizontally oriented, wide-angle total flux sensors positioned ~0.5 m above ground level. Measurements were obtained in non-forested herbaceous and shrub-dominated sites and in (forested) longleaf pine (Pinus palustris Miller) savanna. Using log–log scaling to reveal downward bias, incident energy was positively related to FRED from nadir radiometers (R2 = 0.47) and WASP (R2 = 0.50). As a demonstration of how this result could be used to describe ecological effects, we predict stem injury for turkey oak (Quercus laevis Walter), a common tree species at our study site, using incident energy inferred from remotely sensed FRED. On average, larger-diameter stems were expected to be killed in the forested than in the non-forested sites. Though the approach appears promising, challenges remain for remote and in situ measurement.

Citation: Dickinson MB, Butler BW, Hudak AT, Bright BC, Kremens RL, and Klauberg C. 2019. Inferring energy incident on sensors in low-intensity surface fires from remotely sensed radiation and using it to predict tree stem injury. International Journal of Wildland Fire 28(3): 230-236. https://doi.org/10.1071/WF18164
Topic(s): Fire Behavior, Fire Effects, Ecological - Second Order, Vegetation
Ecosystem(s): None
Document Type: Book or Chapter or Journal Article
NRFSN number: 19263
Record updated: Apr 4, 2019