Andrew A. May, Ezra Levin, Christopher J. Hennigan, Ilona Riipinen, Taehyoung Lee, Jeffrey L. Collett, Jose L. Jimenez, Sonia M. Kreidenweis, Allen L. Robinson
Year Published:

Cataloging Information

Fire Effects
Ecological - First Order
Management Approaches
Smoke Monitoring
Air Quality
Smoke & Air Quality
Smoke Emissions
Montane dry mixed-conifer forest, Ponderosa pine woodland/savanna

NRFSN number: 13476
FRAMES RCS number: 17384
Record updated: November 14, 2017

Atmospheric organic aerosol concentrations depend in part on the gas-particle partitioning of primary organic aerosol (POA) emissions. Consequently, heating and dilution were used to investigate the volatility of biomass-burning smoke particles from combustion of common North American trees/shrubs/grasses during the third Fire Lab at Missoula Experiment. Fifty to eighty percent of the mass of biomass-burning POA evaporated when isothermally diluted from plume- (~1000 µg m-3) to ambient-like concentrations (~10 µg m-3), while roughly 80% of the POA evaporated upon heating to 100°C in a thermodenuder with a residence time of ~14 sec. Therefore, the majority of the POA emissions were semivolatile. Thermodenuder measurements performed at three different residence times indicated that there were not substantial mass transfer limitations to evaporation (i.e., the mass accommodation coefficient appears to be between 0.1 and 1). An evaporation kinetics model was used to derive volatility distributions and enthalpies of vaporization from the thermodenuder data. A single volatility distribution can be used to represent the measured gas-particle partitioning from the entire set of experiments, including different fuels, organic aerosol concentrations, and thermodenuder residence times. This distribution, derived from the thermodenuder measurements, also predicts the dilution-driven changes in gas-particle partitioning. This volatility distribution and associated emission factors for each fuel studied can be used to update emission inventories and to simulate the gas-particle partitioning of biomass-burning POA emissions in chemical transport models.


May, Andrew A.; Levin, Ezra; Hennigan, Christopher J.; Riipinen, Ilona; Lee, Taehyoung; Collett, Jeffrey L.; Jimenez, Jose L.; Kreidenweis, Sonia M.; Robinson, Allen L. 2013. Gas-particle partitioning of primary organic aerosol emissions: 3. biomass burning. Journal of Geophysical Research: Atmospheres 118(19):11,327-11,338.

Access this Document