Skip to main content
Alexander S. Honeyman, Timothy S. Fegel, Henry F. Peel, Nicole A. Masters, David C. Vuono, William Kleiber, Charles C. Rhoades, John R. Spear
Year Published:

Cataloging Information

Fire Ecology

NRFSN number: 25028
FRAMES RCS number: 66823
Record updated:

Wildfires are a perennial event globally, and the biogeochemical underpinnings of soil responses at relevant spatial and temporal scales are unclear. Soil biogeochemical processes regulate plant growth and nutrient losses that affect water quality, yet the response of soil after variable intensity fire is difficult to explain and predict. To address this issue, we examined two wildfires in Colorado, United States, across the first and second postfire years and leveraged statistical learning (SL) to predict and explain biogeochemical responses. We found that SL predicts biogeochemical responses in soil after wildfire with surprising accuracy. Of the 13 biogeochemical analytes analyzed in this study, 9 are best explained with a hybrid microbiome + biogeochemical SL model. Biogeochemical-only models best explain 3 features, and 1 feature is explained equally well with the hybrid and biogeochemical- only models. In some cases, microbiome-only SL models are also effective (such as predicting NH4 1). Whenever a microbiome component is employed, selected features always involve uncommon soil microbiota (i.e., the “rare biosphere” [existing at ,1% mean relative abundance]). Here, we demonstrate that SL paired with DNA sequence and biogeochemical data predicts environmental features in postfire soils, although this approach could likely be applied to any biogeochemical system.


Honeyman, Alexander S.; Fegel, Timothy S.; Peel, Henry F.; Masters, Nicole A.; Vuono, David C.; Kleiber, William; Rhoades, Charles C.; Spear, John R. 2022. Statistical learning and uncommon soil microbiota explain biogeochemical responses after wildfire. Applied and Environmental Microbiology 88(13):e0034322.

Access this Document