E. Louise Loudermilk, Joseph O’Brien, Scott L. Goodrick, Rodman Linn, Nick Skowronski, J. Kevin Hiers
Year Published:

Cataloging Information

Fire Behavior
Fire Ecology
Fire Effects

Record updated: June 13, 2022
NRFSN number: 24631

Background: The structure and function of fire-prone ecosystems are influenced by many interacting processes that develop over varying time scales. Fire creates both instantaneous and long-term changes in vegetation (defined as live, dead, and decomposing plant material) through combustion, heat transfer to living tissues, and subsequent patterns of recovery. While fuel available for combustion may be relative to the amount of vegetation, it is equally instructive to evaluate how the physical structure and other characteristics of vegetation influence fire dynamics, and how these interactions change between fire events. This paper presents a conceptual framework for how vegetation not only embodies the legacy of previous fires but creates the physical environment that drives fire behavior beyond its combustion as a fuel source.

Results: While many environmental factors affect both the post-fire vegetation trajectory and fire dynamics them- selves, we present a conceptual framework describing how vegetation’s structural characteristics control the local microclimate and fluid dynamics of fire-induced flows, and how that is influenced by ecosystem and atmospheric processes. Shifting our focus from fuels to vegetation allows us to integrate spatial and temporal feedbacks between fire, vegetation, soil, and the atmosphere across scales. This approach synthesizes the combustion and flammability science, the physical influence on fire behavior, and the ecosystem dynamics and processes that occur between fires and within a fire regime.

Conclusions: We conclude that fire behavior, including its prediction and ecological effects, should be broadened to include the dynamic processes that interact with vegetation, beyond its role as fuel. Our conceptual framework illus- trates the crucial feedbacks across scales that link the finer details of vegetation and fire behavior processes that occur within a fire and have additive effects that feedback into the coarser scale processes and functions within an ecosys- tem. Shifting the fuels paradigm to integrate the combustion, physical, and ecological roles of vegetation as complex drivers of fire behavior and outcomes will broaden discovery within wildland fire science and ecology.


Loudermilk EL, O’Brien JJ, Goodrick SL, Linn RR, Skowronski NS, and Hiers JK. 2022. Vegetation’s influence on fire behavior goes beyond just being fuel. Fire Ecology 18, Article number: 9.

Access this Document