Cataloging Information
Simulation Modeling
Risk
Computational natural wildfire simulation is a computing-intensive process. The process is also challenging because of the need to integrate data with wide spatial and temporal variability. Our study sought to simulate rapidly spreading natural wildfire with fidelity and quality through computational realization. We developed a novel probabilistic wildfire risk assessment tool whose operation was driven by real-time wildfire observations. A Gaussian transformation incorporating present and historical geographical data to the wildfire model was adopted to accommodate scale differences in the datasets. The model outputs, therefore, depict possible spread pathways using Monte Carlo simulations. We created a computational solution for deploying wildfire simulations to a highly scalable, distributed and parallel computing framework, which facilitated a fairly linear increase in the simulation run time as the computation load increased exponentially. Our computational solution synthesized and fully automated the various stages of the process, from data preparation to analysis and visualization. The platform can potentially provide real-time decision-making support to wildfire hazard management.
Citation
Access this Document
Treesearch
publication access with no paywall
Check to see if this document is available for free in the USDA Forest Service Treesearch collection of publications. The collection includes peer reviewed publications in scientific journals, books, conference proceedings, and reports produced by Forest Service employees, as well as science synthesis publications and other products from Forest Service Research Stations.