A JFSP Fire Science Exchange Network
Bringing People Together & Sharing Knowledge in the Northern Rockies

Coupling wildfire spread and erosion models to quantify post-fire erosion before and after fuel treatments

Author(s): Michele Salis, Liliana Del Giudice, Peter R. Robichaud, Alan A. Ager, Annalisa Canu, Pierpaolo Duce, Grazia Pellizzaro, Andrea Ventura, Fermin Alcasena-Urdiroz, Donatella Spano, Bachisio Arca
Year Published: 2019

Wildfires are known to change post-fire watershed conditions such that hillslopes can become prone to increased erosion and sediment delivery. In this work, we coupled wildfire spread and erosion prediction modelling to assess the benefits of fuel reduction treatments in preventing soil runoff. The study was conducted in a 68,000-ha forest area located in Sardinia, Italy. We compared no-treatment conditions v. alternative strategic fuel treatments performed in 15% of the area. Fire behaviour before and after treatments was estimated by simulating 25,000 wildfires for each condition using the minimum travel time fire-spread algorithm. The fire simulations replicated historic conditions associated with severe wildfires in the study area. Sediment delivery was then estimated using the Erosion Risk Management Tool (ERMiT). Our results showed how post-fire sediment delivery varied among and within fuel treatment scenarios. The most efficient treatment alternative was that implemented near the road network. We also evaluated other factors such as exceedance probability, time since fire, slope, fire severity and vegetation type on post-fire sediment delivery. This work provides a quantitative assessment approach to inform and optimise proactive risk management activities intended to reduce post-fire erosion.

Citation: Salis, Michele; Del Giudice, Liliana; Robichaud, Peter R.; Ager, Alan A.; Canu, Annalisa; Duce, Pierpaolo; Pellizzaro, Grazia; Ventura, Andrea; Alcasena-Urdiroz, Fermin; Spano, Donatella; Arca, Bachisio. 2019. Coupling wildfire spread and erosion models to quantify post-fire erosion before and after fuel treatments. International Journal of Wildland Fire 28(9):687-703. https://doi.org/10.1071/WF19034
Topic(s): Post-fire Management, Post-fire Rehabilitation, Erosion Control, Recovery after fire, Restoration
Ecosystem(s): None
Document Type: Book or Chapter or Journal Article
Hot Topic(s): Post-fire Debris Flows
NRFSN number: 20106
FRAMES RCS number: 58657
Record updated: Oct 16, 2019