Skip to main content
Author(s):
Zhihua Liu, Ashley Ballantyne, L. Annie Cooper
Year Published:

Cataloging Information

Topic(s):
Fire Effects
Ecological - First Order
Soil Heating
Fire & Climate

NRFSN number: 19109
Record updated:

The biophysical feedbacks of forest fire on Earth’s surface radiative budget remain uncertain at the global scale. Using satellite observations, we show that fire-induced forest loss accounts for about 15% of global forest loss, mostly in northern high latitudes. Forest fire increases surface temperature by 0.15 K (0.12 to 0.19 K) one year following fire in burned area globally. In high-latitudes, the initial positive climate-fire feedback was mainly attributed to reduced evapotranspiration and sustained for approximately 5 years. Over longer-term (> 5 years), increases in albedo dominated the surface radiative budget resulting in a net cooling effect. In tropical regions, fire had a long-term weaker warming effect mainly due to reduced evaporative cooling. Globally, biophysical feedbacks of fire-induced surface warming one year after fire are equivalent to 62% of warming due to annual fire-related CO2 emissions. Our results suggest that changes in the severity and/or frequency of fire disturbance may have strong impacts on Earth’s surface radiative budget and climate, especially at high latitudes.

Citation

Liu Z, Ballantyne AP and Cooper LA. 2019. Biophysical feedback of global forest fires on surface temperature. Nature Communications 10: 214.

Access this Document