Cataloging Information
Soils
Vegetation
Wildlife
Climate and Fire Regime Change
Fire and Landscape Mosaics
Fire & Wildlife
Amphibians
Birds
Invertebrates
Mammals
Global fire regime change is threatening terrestrial biodiversity. Understanding how these changes affect biota is essential to protect biodiversity now and into the future. A targeted examination of the mechanisms through which fire influences populations will help achieve this by enabling comparisons and connections across taxa. Here, we develop a cross-taxa framework that identifies mechanisms through which fire regimes influence terrestrial species populations over different time scales, and traits on which those mechanisms depend. We focus on amphibians, birds, fungi, insects, mammals, plants, and reptiles. First, we identify key mechanisms through which fire regimes influence species populations across different taxonomic groups. Second, we link these mechanisms to functional traits that influence the relevance to different species. Third, we identify traits that shape the vulnerability—or conversely, resilience—of species populations to frequent, high-intensity, and large wildfires that are emerging as a threat in many parts of the world. Finally, we highlight how this integrative framework can be useful for understanding and identifying fire-related threats common to different taxa across the globe and for guiding future research on fire-related population change.