Skip to main content
Author(s):
Tegan McWhirter, Elizabeth A. Webb, Jeffery P. Dech
Year Published:

Cataloging Information

Topic(s):
Fire Intensity / Burn Severity
Fuels Inventory & Monitoring

NRFSN number: 27951
Record updated:

Understanding past fire regimes requires reliable proxy data that record fire conditions and preserve them over time. The objective of this study was to determine if the oxygen isotope composition of charred bark samples (pyrogenic organic matter) could be used as proxy data to differentiate wildfires based on burn intensity. We collected charred and uncharred bark samples from three fire sites in northern Ontario, Canada that represented a gradient of fire intensity as depicted by Fire Weather Index (FWI) data. We hypothesized that the mean Δ18Obark-char (the difference between δ18O of uncharred bark and a charred sample) would be greater for fires with higher intensities. Analysis of variance of Δ18Obark-char indicated a significant effect of fire event (F = 73.6, p < 0.001), which explained 57.0% of the variance. A prescribed surface fire treatment (mean FWI = 9.5) had significantly lower Δ18Obark-char than two natural crown fires (FWI = 21 and 27). These results demonstrate that Δ18Obark-char differentiated moderate from high intensity fires in a similar manner to the FWI data.

Citation

McWhirter T, Webb EA, and Dech JP. 2024. Differences in the intensity of past forest fire events inferred from stable oxygen isotope analysis of charred bark. Canadian journal of forest research Vol 54 No 11.

Access this Document

Treesearch

publication access with no paywall

Check to see if this document is available for free in the USDA Forest Service Treesearch collection of publications. The collection includes peer reviewed publications in scientific journals, books, conference proceedings, and reports produced by Forest Service employees, as well as science synthesis publications and other products from Forest Service Research Stations.