Skip to main content
Author(s):
David M. Szpakowski, Jennifer L. Rooker Jensen, T. Edwin Chow, David R. Butler
Year Published:

Cataloging Information

Topic(s):
Fire Intensity / Burn Severity
Mapping

NRFSN number: 25769
Record updated:

Burn severity is commonly assessed using Burn Ratios and field measurements to provide land managers with estimates of the degree of burning in an area. However, less commonly studied is the ability of spectral indices and Burn Ratios to estimate field-measured fire effects. Past research has shown low correlations between fire effects and Landsat-derived Burn Ratios, but with the launch of the Sentinel-2 constellation, more spectral bands with finer spatial resolutions have become available. This paper explores the use of several red-edge-based indices and Burn Ratios alongside more ‘traditional’ spectral indices for predicting fire effects, measured from the Maple and Berry fires in Wyoming, USA. The fire effects include ash depth, char depth, post-fire dead lodgepole pine (Pinus contorta; PICO) density/stumps, mean basal diameter, cone density on dead post-fire trees, coarse wood percent cover/volume/mass, percent cover of ghost logs and initial regeneration of post-fire PICO/aspen density. All-possible-models regression was used to determine the best models for estimating each fire effect. Models with satisfactory R2 values were constructed for post-fire dead PICO stumps (0.663), coarse wood percent cover (0.691), coarse wood volume (0.833), coarse wood mass (0.838), ash depth (0.636) and percent cover of ghost logs (0.717). Red-edge-based indices were included in all of the satisfactory models, which shows that the red-edge bands may be useful for measuring fire effects.

Citation

Szpakowski DM, Jensen JLR, Chow TE, and Butler DR, 2023, Assessing the Use of Burn Ratios and Red-Edge Spectral Indices for Detecting Fire Effects in the Greater Yellowstone Ecosystem, Forests 14(7), article 1508; https://doi.org/10.3390/f14071508

Access this Document