Home
A JFSP Fire Science Exchange Network
Bringing People Together & Sharing Knowledge in the Northern Rockies

Multifidelity prediction in wildfire spread simulation: modeling, uncertainty quantification and sensitivity analysis

Author(s): M.M. Valero, Lluís Jofre, Ricardo Torres
Year Published: 2021
Description:

Wildfire behavior predictions typically suffer from significant uncertainty. However, wildfire modeling uncertainties remain largely unquantified in the literature, mainly due to computing constraints. New multifidelity techniques provide a promising opportunity to overcome these limitations. Therefore, this paper explores the applicability of multifidelity approaches to wildland fire spread prediction problems. Using a canonical simulation scenario, we assessed the performance of control variates Monte-Carlo (MC) and multilevel MC strategies, achieving speedups of up to 100x in comparison to a standard MC method. This improvement was leveraged to quantify aleatoric uncertainties and analyze the sensitivity of the fire rate of spread (RoS) to weather and fuel parameters using a full-physics fire model, namely the Wildland-Urban Interface Fire Dynamics Simulator (WFDS), at an affordable computation cost. The proposed methodology may also be used to analyze uncertainty in other relevant fire behavior metrics such as heat transfer, fuel consumption and smoke production indicators.

Citation: Valero, Mario Miguel; Jofre, Lluís; Torres, Ricardo. 2021. Multifidelity prediction in wildfire spread simulation: modeling, uncertainty quantification and sensitivity analysis. Environmental Modelling & Software 141:105050. https://doi.org/10.1016/j.envsoft.2021.105050
Topic(s): Fire Behavior, Simulation Modeling, Weather, Fuels
Ecosystem(s): None
Document Type: Book or Chapter or Journal Article
NRFSN number: 23422
FRAMES RCS number: 63104
Record updated: Aug 4, 2021