Cataloging Information
Ecological - Second Order
Vegetation
Soils
Little previous work has been conducted on effects of natural, high-severity wildfires on nitrogen (N) dynamics. We measured aboveground plant biomass, foliar N, and net N mineralization 2 years after stand-replacing fires in lodgepole pine (Pinus contorta var. latifolia) forests in Grand Teton National Park, Wyoming, USA. We detected a five-fold difference in foliar N (% dry weight) among 14 species, from 0.77% in the native grass Calamagrostis rubescens, to 3.4% in the native N-fixer Lupinus argenteus and the non-native forb Lactuca serriola. We also observed higher foliar N in the burned stands for four of six species that occurred in both burned and unburned areas. Mean net N mineralization ranged from -23 to +27 mg-N kg soil-1 year-1, and was predominantly NO3-. However, total biomass and foliar N, for all species combined, showed no relationships with site, fire severity, or net N mineralization-possibly because of (i) lack of inorganic N limitation, (ii) methodological shortcomings, (iii) spatial structure existing at different scales than we measured, or (iv) insufficient plant biomass at this early stage of post-fire development to respond to local variation in N availability.
Citation
Access this Document
Treesearch
publication access with no paywall
Check to see if this document is available for free in the USDA Forest Service Treesearch collection of publications. The collection includes peer reviewed publications in scientific journals, books, conference proceedings, and reports produced by Forest Service employees, as well as science synthesis publications and other products from Forest Service Research Stations.