Cataloging Information
Ecological - Second Order
Soils
Iron oxides are important pedogenic Cr(III)-bearing phases which experience high-temperature alteration via fire-induced heating of surface soil. In this study, we examine if heating-induced alteration of Cr(III)-substituted Fe oxides can potentially facilitate rapid high-temperature oxidation of solid-phase Cr(III) to hazardous Cr(VI). Synthetic Cr(III)-substituted ferrihydrite, goethite and hematite were heated up to 800 °C for 2 h. Corresponding heating experiments were also conducted on an unpolluted Ferrosol-type soil, which had a total Cr content of 220 mg kg−1, initially undetectable Cr(VI) and Fe speciation comprising a mixture of hematite, goethite and ferrihydrite (according to Fe K-edge EXAFS spectroscopy). Up to ∼50% of the initial Cr(III) was oxidised to Cr(VI) during heating of Cr(III)-substituted ferrihydrite and hematite, with the greatest extent of Cr(VI) formation occurring at 200–400 °C. In contrast, heating of Cr(III)-substituted goethite resulted in up to ∼100% of Cr(III) oxidizing to Cr(VI) as the temperature approached 800 °C. In the Ferrosol-type soil, heating at ≥400 °C also resulted in large amounts of Cr(VI) formation, with a maximum total Cr(VI) concentration of 77 mg kg−1 forming at 600 °C (equating to oxidation of ∼35% of the soil's total Cr content). A relatively large portion (31–42%) of the total Cr(VI) which formed during heating of the soil was exchangeable, implying a high level of potential mobility and bioaccessibility. Overall, the results show that Cr(VI) forms rapidly via the oxidation of Fe oxide-bound Cr(III) at temperatures which occur in surface soils during fires. On this basis and given the frequency and extent of wild-fires around the world, we propose that fire-induced oxidation of Fe oxide-bound Cr(III) may represent a globally-significant pathway for the natural formation of hazardous Cr(VI) in surface soil.
Citation
Access this Document
Treesearch
publication access with no paywall
Check to see if this document is available for free in the USDA Forest Service Treesearch collection of publications. The collection includes peer reviewed publications in scientific journals, books, conference proceedings, and reports produced by Forest Service employees, as well as science synthesis publications and other products from Forest Service Research Stations.