Fuel treatment effects in ponderosa pine and dry mixed conifer
forests: 17 Years after the Fire-Fire Surrogate Study

May 31, 2018

= [lana Abrahamson, Supervisory Ecologist, Rocky Mountain Research Station - Fire, Fuel
and Smoke Science Program

= Cory Cleveland, Professor of Terrestrial Ecosystem Ecology, W.A. Franke College of
Forestry and Conservation, University of Montana

= Justin Crotteau, Graduate Student, W.A. Franke College of Forestry and Conservation,
University of Montana

= Tom DeLuca, Dean and Professor, W.A. Franke College of Forestry and Conservation,
University of Montana

= Carl Fiedler, Research Professor of Silviculture, W.A. Franke College of Forestry and
Conservation, University of Montana

=  Mick Harrington, Research Forester (Retired), Rocky Mountain Research Station - Fire,
Fuel and Smoke Science Program

= Sharon Hood, Research Ecologist, Rocky Mountain Research Station - Fire, Fuel and
Smoke Science Program

= Chris Keyes, Research Professor of Silviculture, W.A. Franke College of Forestry and
Conservation, University of Montana

Additional resources provided by Kerry Metlen, Forest Ecologist, The Nature Conservancy, and Diana
Six, Professor, W.A. Franke College of Forestry and Conservation, University of Montana

FORESTRY &
CONSERVATION

pamll. NORTHERN ROCKIES

FIRE SCIENCE
NETWORK

w g A JFSP Knowledge Exchange Consortium

Rocky
Mountain N
Research Station




Blue Mountains
(Hungry Bob, OR)

Northeastern
Cascades

(Mission Creek, WA)

Southern
Cascasdes

(Goosenest, CA)

Central Sierra
Nevada

(Bodgett, CA)

Southern Sierra Nevada
(Sequoia, CA)

FFS Study Sites

Northern Rocky
Mountains

(Lubrecht, MT)

Southwestemn
Plateau
(Northern Arizona, AZ)

Central Appalachian

(Ohio Hills, OH)

A ,.
-1 r
A
A

LTV
\

s Southern

Appalachian Mts.
- (Green River, NC)

» | Southeastern

Piedmont
(Clemson, SC)

Gulf Coastal Plain
(Solon Dixon, AL)

Southern Rocky
Mountains
(Jemez Mountians, NM)

Florida Coastal Plain

(Myakka River, FL)




31%000

314?00

31ﬁ000

31ﬁ000

317P00

519?000

L ===== Sy,

5197000

519?000

N
\
\

519?000

31%000

Greenough Pos

AN g

soula 55 km

\
~ Mis (

-
—
s \
N\
] \
/ / ~—_ _— \
/ ””0/, / S— «\\
/ 0/ / +
f I /
) —
/ e ~—
| /i // / ~
i /‘ ” y, S
’/‘ “f” ﬂl ‘/" / 4 . pa—
/ /0 1 { _— T
] / / = -~ ~_
] | [ 4 A N
y ”" / | / ~__ N
V3 / / o= N ~

\
=,
§=§L=\=§§

N\
N\

\

| / \ \ \ - —
| [ \ \ \ \ e T
| / \\ \ \ \ _— N
y \ \ N
e / \ | |\ S N
/ - \ \‘ \ \ - ~ ~
/ ~ \ \ \ _— N
//'/ /// \\\ \\ \\ \\ \\\ P - o L f /
- \ \ N T
B /// \ \ N P o\ I
- \\ // L \. ”” /
/// \ \ \ ~__ e ™~ \ /,/' f /
o . \ \ — - ~ \ \ - ”ﬂ /
~ . \ — \ \ .
- P N \ N P o N ="\, )

?/"

e

—+
2%
_

-

//
/
y
)
(
\
\
"

Sommm=a==

o

=====$
P

S
-
e

=
=
=========’
==

XQ

=

- Ca mp/LOOp F\{d“

| e
—

\

= \\

3,
/
//'
e

N\
AN

[
Lubrecht Camp

.

¢======%========

00&\
= \
7== N / \ \

\ / \

y — - !
/ — — &
/ ~— &
- ~—_ A =
p e il L= _— AN D\ / [
e < q |

\
\
\\
//
/
5}
//
|
|
\
\
|
|
r/

\\
un

|

|

AN
\
\
)
/
/
///
-
///
//
/
“,‘ §35g8
F\)H(
/
|
|
/
/
|
|
|
/

/ / \ \ AN " ~
/ / \\ \ S " ~
{ T~ n
/ / 2N ~__ N\
/ NN —— ‘
/ y \ \ . X =
/ / \ \ NG “ ‘\\ ‘

1 1, /
\ \ S~ o \ / ‘/ / /
\ P / /
\ \ \\ S | / / /‘
LN \ \ & C / / ’
\ i |
\ \ \\ \\ 1 | / \
N\ \ o \ f N
\ " \
NN \ 1 \ ‘ {
\ AN \ \ " \ / _
\ A\ \ | | —
N\ N\ AN \ \ \ \ —
\ \ \ \ \ \ \

\ \ \ \ “\\ \ /> — o \ —_—
AR W 1NN X N
\ \ \ A \ N AN ™~

|
5198000

|
5197000

|
5196000

\ i n ,/
\ / / \ L
— \ I = S~
~ | | o "
™ | | [ " 1
N\ \ | | wo
\ | " "o
S \ \ \ \ 0 “

\ \ \
‘ \ | ‘\‘ \\ ) /
\ \ | | —
\ w | / / Z h
\ \ |\ ayd
/r ) | [ \ . // ya
/ [ [ ~
) P L
/ / / - ~

/ - p \
/ / < ,/ =
( e 4 — ~ N
\ - - _
\;7/ - _— P o \\
/// S \
_— \
= _ \
- _— T \
S _— N\ \
- — \
_ - — ) o
- = \ / S
_— ) / (=]
e / I3
— / /
N S s
I N A
7/7 \ // / / d
/ “ // / / / 4
— /[ S/
N\ / / / /
\ / / / (
\ / / r‘ ~
. \‘ | / / / —
N [ \
\ | S
\ | | | —_
| A N
‘ / / | N \
| J / / IR

|
317000

|
312000

Fire/Fire Surrogate
Lubrecht Experimental Forest

University of Montana
College of Forestry and Gonservation

|
313000

|
314000

Secondary Highway
Primary Road

FFS Units

WhittakerPlots
Skidtrails —— Secondary Road

Landings --=-=-===_Unimproved Road

40-ft Contours === Spur Road
=== Primitive Road

|
315000

04 06

|
316000

|
| |
Kilometers

Projection: Universal Transverse Mercator (UTM), Zone 12 N
Datum: North Amercian Datum 1983 (NADS83)

Spheroid: GRS 1980

Magentic Declination = 15.5 Degrees

N MN




Figure 1: Each block is comprised of four units. Within each unit there are 36 points and ten Whitaker
plots ( = Whitaker Plots) centered on their respective points. Fuel Transects are located at each
. point. Coarse woody debris transects are Jocated at every other point (odd-numbered points).
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Lubrecht Fire-Fire Surrogate (FFS) Study: Treatment Overview

Silvicultural Cutting Treatments

Four treatments (control, burn-only, thin-only, and thin-burn) were evaluated for their
effectiveness in moving stands toward desired future conditions (i.e., relatively open, large-tree
dominated, primarily ponderosa pine/seral species composition, uneven-aged, randomly
arranged, with scattered openings).

e The control treatment involved no thinning or burning.

e The burn-only treatment involved prescribed broadcast burning in the spring.

e The treatment referred to as thin-only (for consistency with FFS terminology) included
low thinning and improvement/selection cutting.

e The thin-burn treatment included low thinning and improvement/selection cutting,
followed by broadcast burning the following spring.

All treatment units were leave-tree marked to the target basal area (BA) density before
treatments were assigned so that a subset of similar trees could be directly compared among
treatments in the future (target BA = 48 ft*/ac over each 25-ac treatment unit, although density
varied considerably over any given acre). Marking favored healthy, larger (>16-in DBH) trees in
the following order: PP>WL>LP>DF. Modest numbers of healthy, medium-sized and smaller
ponderosa pines were also marked for leave, if available, until the target reserve basal area
density was achieved, and to make progress toward the desired uneven-aged structure.

Treatments Evaluated

- Control (no treatment; ~105 ft*/ac BA in existing uncut stand)

- Burn-only (spring broadcast burn)

- Thin-only (48 ft*/ac reserve BA; PP>WL>LP>DF)

- Thin-burn (48 ft*/ac reserve BA; PP>WL>LP>DF); spring broadcast burn)

Burning Treatments

e All six burn units were scheduled for treatment in the spring of 2002 after slash from the
cut units had one season of drying.

e The six burns were conducted between May 1 and June 25, 2002.

o The May and early June dates coincide well with typical low-elevation prescribed
underburning in this region.

o The last burn was outside of the normal seasonal burning window with significant
‘greenup’ and the progression towards the classic wildfire season.

e Controlled strip-headfires were used on all burns by 3-5 igniters directed by an ignition
specialist. Typically, slow ignition with short strips (15-20ft) was used in the Cut/Burn
units to reduce flame lengths in slash concentrations and minimize tree injury, contrasted
to rapid, continuous ignition (30-40ft strip widths) in lighter fine fuel loadings in the
Burn Only units to increase flame lengths to kill trees.



Table 1. Timing, weather, and fuel moisture conditions for the Lubrecht FFS burns.

Parameters Unit 1-2 Unit 1-1 Unit 3-3 Unit 2-4 Unit 3-2 Unit 2-3
Treatment Cut/Burn Burn Cut/Burn Cut/Burn Burn Burn
Date 5/1/02 5/15/02 5/31/02 6/6/02 6/14/02 6/25/02
Burn Times 1020-1800 1100-1530 1100-1700 1300-1830 1030-1600 1100-1600
Temp. Range (F) 53-56 48-53 64-80 57-64 67-83 67-83
R.H. Range (%) 28-42 35-46 20-29 27-45 20-41 26-48
Wind sp. (mph) 2-5 1-3 3-6 g=8 4-8 g=13 1-3 1-3
Fuel Moisture (%)

Litter 9 13 7 10 9 11
1-Hour 14 13 13 15 10 12
10-Hour 21 12 21 23 22 11
100-Hour 33 23 29 24 51 16
1000-Hr sound 55 50 44 44 60 36
1000-Hr rotten 63 77 80 63 131 38
Duff 38 28 44 94 40 40




Short-Term Overstory Dynamics — Carl Fiedler
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Figure 1. Pretreatment (2001) and post-treatment (2005) tree density (trees’ha >10 cm dbh), by
5-cm diameter class and treatment.
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Figure 2. Change in quadratic mean diameter (QMD) from pretreatment to 2005, by treatment,
for trees >10cm dbh.

10 .
E g : ab
c a
3
5 6
o
=
94I
s
(@)]

o 2
I
0

Control  Burn-only Thin-only Thin-burn

Figure 3. Change in height to live crown (HLC) from pretreatment to 2005, by treatment, for
trees >10cm dbh.
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Figure 4. Post-treatment live canopy cover (CC) in 2003, one year after burning and two years
after thinning, by treatment.
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Short-Term Thinning and Burning Effects on Fuels — Mick
Harrington

Objectives

To assess live and dead, surface and ground fuel loadings prior to treatments, after
thinning, and after prescribed burning to determine the effects of these activities on fuel
quantity and quality. Additionally, fuel consumption will be an independent variable for
explaining fire impacts on other site attributes.

Methods

Pretreatment biomass of surface down and dead woody fuels was estimated along two
50ft long Brown transects at each of the 36 grid points. Duff depth was measure at 2
points, shrub biomass in 2 subplots, and small tree biomass in 1 subplot. Accurate depth
measurements of the shallow litter layer were not possible, so it was destructively
sampled from 2, 1ft*2 subplots at each of the 36 grid points per unit (72 total). A depth
to loading regression for each block of 4 units was developed for the duff layer by
destructively sampling 13 points per unit or 52 points per block. The regressions were
somewhat similar among blocks but were more accurate by keeping the blocks separate.
Most duff layers were less than 2 inches deep so layer separation was not necessary. This
fuel sampling methodology was also followed for post-burn assessment in the burn only
units.

It became apparent that Brown’s transect method would be inaccurate in the Cut/Burn
and Cut Only units. The cut-to-length processor that cut and limbed the trees deposited
the branch wood in piles and then drove over them causing significant compaction.
Accurately counting intercepts within these piles was tested and found to be challenging
and disruptive to the fuel bed. A new technique was used in which one, 1{t*2 sample of
all fuels less than 1 inch in diameter (litter, 1-hour, and 10-hour) were collected on each
transect, separated into different fuel components, and oven-dried. Fuels larger than 1
inch (100-hour and 1000-hour) were counted along each transect as in pretreatment
sampling.

Duff depth reduction in the burn units was measured with four, 8-inch spikes located
around each grid point. The top of the spike was placed at the top of the duff beneath the
litter layer. After the burns, the exposed spike length equaled the duft depth consumed
and the length of the spike to mineral soil equaled total duff depth.

To assess burn severity, each foot along the 50ft transects was given 1 of 4 qualitative
ratings; no burn, light burn (surface little burned, little duff consumed), moderate burn
(duff mostly consumed, much charred material remaining), severe burn (all fuels
consumed, no organic matter remaining, soil color changed). This resulted in burn
severity ratings along 3600 linear feet in each unit.



Preliminary results

Pre- and post-treatment fuel loadings by treatment are shown in Table 1. Quantities of
pretreatment fine fuels (litter + 1Hr, 10-Hr, and 100-Hr) were similar among treatments
with the exception of the litter which was twice as high in the control units as the others.

Table 1. Pre-and post-treatment surface fuel loadings (tons/acre) and duff depths (inches)
by treatment (shrub and small tree biomass is not reported).
Litter+1Hr 10-Hr 100-Hr 1000-Hr Duff Depth

Burn preburn 1.00 0.73 0.82 6.07 0.77
Only postburn 0.30 0.44 0.48 2.02 0.55
Cut preharvest 0.95 0.74 0.71 4.19 0.98
Only postharvest  2.76 3.33 3.31 4.24 0.84
Cut/ preharvest 0.87 0.71 0.66 3.79 1.14
Burn postharvest 4.18 3.28 3.87 5.28 0.90

postburn 0.43 0.93 2.06 2.59 0.72
Control 2.07 0.73 1.01 8.05 1.33

Duff was also deeper in the controls by 15 to 42%. One-thousand-Hr fuels ranged from
about 4 to 8 tons/acre with 65 to 85% classified as rotten material.

Harvesting increased fine fuels 4 to 5 fold. One-thousand-Hr fuels increased modestly
because, even though new material was added, a general reduction of rotten logs occurred
with destruction by logging equipment. A slight decrease in duff depth resulted from
harvesting.

Burning reduced fine fuels by 50% in Burn Only units and 70% in Cut/Burn units, where
10-Hr and 100-Hr fuels remained above pretreatment levels. Duff depths decreased by 20
to 30% with burning.

Burn severity was quite variable between and within treatments. Treatment comparisons
follow:

Treatment None Low Moderate High
Burn only 37%  52% 6% 5%
Cut/burn 32% 50% 15% 4%

Both burn treatments left about 1/3 of the area unburned on average but, for example, one
Cut/Burn unit had 48% unburned and another had only 15%. In this latter unit, 29% of
the 36001t of transect length was occupied with slash, compared to about 15% on the
other two Cut/Burn units. The Cut/Burn units experienced 19% in the combined high and
moderate burn severity range compared to 11% for the Burn Only. This indicates that
even though the cut/burn units had a greater average duff depth remaining (Table 1), they
had more places with no duff.



Understory Sampling Methods — Ilana Abrahamson

454 ILANA L. ABRAHAMSON ET AL. Ecological Applications
Vol. 21, No. 2
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Fic. 1. The four sampling designs tested for estimating cover of forest understory plants in western Montana, USA: (a) point

line intercept transect, 166 points spaced every 30 cm; (b) Daubenmire transects, fifty 20 X 50 cm subplots; (¢) modified Whittaker
plots, ten 1-m? quadrats, two 10-m? subplots, one 100-m? subplot, within full 20 X 50 m plot; (d) strip adaptive cluster sampling
initial transect, fifty 1 X I m subplots.

We tested conventional (modified Whittaker plots and Daubenmire and point—line intercept transects) and novel
(strip adaptive cluster sampling [SACS]) approaches to sampling understory plants to determine their efficacy for
quantifying abundance on control and thinned-and-burned treatment units.

For species grouped by growth-form and for common species, all three conventional designs were capable of
estimating cover with a 50% relative margin of error with reasonable sample sizes (3—36 replicates for growth-
form groups; 8—14 replicates for common species); however, increasing precision to 25% relative margin of error
required sample sizes that may be infeasible (11-143 replicates for growth form groups; 28—54 replicates for
common species).

All three conventional designs required enormous sample sizes to estimate cover of nonnative species as a group
(29-60 replicates) and of individual less common species (62—118 replicates), even with a 50% relative margin of
error. SACS was the only design that efficiently sampled less common species, requiring only 6—11% as many
replicates relative to conventional designs.

Conventional designs may not be effective for estimating abundance of the majority of forest understory plants,
which are typically patchily distributed with low abundance, or of newly establishing nonnative plants. Novel
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FiG. 4. Sampling results for the four species sampled using
strip adaptive cluster sampling (SACS). (a) Percent cover, (b)
within-stand standard deviation, and (c) coefficient of variation
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for sampling abbreviations). Coefficient of variation for Bromus
tectorum and Cirsium arvense is based on data only from the
thinned-and-bumed stands; these species were absent or present
on only one control stand.
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Vegetation Response to Fire and Fire Surrogate Treatments — Kerry Metlen
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Fig. 4. NMS ordination of the understory plant community at the Lubrecht
Forest FFS site before treatment and in the three subsequent years. Individual

Metlen & Fiedler 2006 species covers were aligned to the block median cover (for each species) before
analysis.
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New Figure: Native richness (mean +/- 2 standard error, N=3) at two scales, the 1 m? quadrat and the 1,000 m” plot,
before (2001) and after fire and fire surrogate treatments (2004) at Lubrecht forest. Letters indicate significant
differences within the year of measurement from Metlen & Fiedler (2006).
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Figure 8.2 (a) Typical short-term (<5 years) response of exotic species to thinning and burning (res-
toration) treatments, based on ongoing experiments at numerous locations across the West. These
studies provide evidence that exotic invaders are not transforming native plant communities during
the first few years after treatment, as exotic species cover average <2% at nearly all sites. Dashed
lines (in gray) extended after the fifth year indicate expected native and exotic relative abundances
based on current trends. (b) Hypothesized transformation of the plant community by exotics if
changing environment or propagule pressure allows exotic species to increase and dominate the
community over longer time periods (i.e., >5 years).
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Long-term Vegetation Response in the F&FS Study
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show treatment means and standard error by year: 2002 (immediately after treatment), 2004, and
2016. Significant ANOVA factors (p-values < 0.1) are shown with text at the top of each panel.

Letters above bars show pairwise differences (04=0.05) within treatment between years (lowercase)

and within year between treatments (uppercase).
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Short-Term Treatment Effects on Soil Nutrient Cycling — Tom DeLuca

Available online at www.sciencedirect.com
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Restoration treatments in a Montana ponderosa pine forest:
Effects on soil physical, chemical and biological properties

Michael J. Gundale*, Thomas H. DeLuca **, Carl E. Fiedler?,
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Abstract

Low-clevation ponderosa pine ecosystemns of the inland northwestern United States experienced frequent, low-severity fire
that promoted open stands dominated by large diameter ponderosa pine (Pinus ponderosa). Fire exclusion has led o increased
stand densities, often due to proliferation of less fire-tolerant species and an increased nsk of stand-replacing wildfire. These
fundamental changes have spurred interest m forest restoration treatments, including thinning, presenbed buming and thmning
combined with prescribed buming. We examined the response of numerous soil physical, chemical and biological parameters to
these treatments 1 and 3 years post-treatment, using a replicated field experiment. Individual restoration treatments were
implemented in 9 ha units. We observed significandy lower C:N in the O horizon and higher O horizon and mineral soil NHy™
concentrations in both BURN and THIN/BURN treatments during year 1. Soil NH,™ remained elevated through year 3 in the
THIN/BURN treatment. Net N mineralization, nitrification and NO,~ concentration were significantly greater in the THIN/
BURN than all other reatments dunng year 1 and net nitnfication rates remained elevated through year 3. A ligh C:N substrate
decomposed more rapidly in both BURN treatments relaive to the unburned reatments. Treatments had no immediate effect on
the soil microbial community: however, phospholipid fatty acid profiles differed 16-18 weeks following treatments due to
higher actmomycetes in the THIN/BURN treatment. The large scale of our treatment unmits resulted in significant vanation in fire
seventy among prescribed burns as a funetion of vanation in fuel quantity and distribution, and weather conditions during burn
days. Correlation analysis revealed that vanation in fine fuel consumed was tightly comrelated with net N minerahzation and net
nitrification. These differences in soil chamctenstics may influence stand productivity and understory species composition in the
future.

) 2005 Elsevier B.V. All rights rmeserved.
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Figure 1. Net nitrification in a 30 day aerobic incubation (yr 1 and 3) and net nitrification vs fine fuel consumption
from the Lubrecht Fire, Fire Surrogates study.

18



Long-Term Treatment Effects on Soil Nutrient Cycling — Cory
Cleveland

Ecological Applications, 26(5), 2016, pp. 1503-1516
© 2016 by the Ecological Society of America

Forest restoration treatments have subtle long—tcrm effects on soil
Cand N C)’Cling in mixed conifer forests

Peter W. GANZLIN,'# MicHAEL J. GUNDALE,2 RacHEL E. BECKNELL,? AND Cory C. CLEVELAND'S

! Department of Ecosystem and Conservation Sciences, College of Forestry and Conservation, University of Montana, Missoula,
Montana 59812 USA
2Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umed, 90183 Sweden
3Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri 63121 USA
Abstract. Decades of fire suppression following extensive timber harvesting have left much of the forest in the intermountain western United States exceedingly dense, and
forest restoration techniques (i.e., thinning and prescribed fire) are increasingly being used in an attempt to mitigate the effects of severe wildfire, to enhance tree growth
and regeneration, and to stimulate soil nutrient cycling. While many of the short-term effects of forest restoration have been established, the long-term effects on soil
biogeochemical and ecosystem processes are largely unknown. We assessed the effects of commonly used forest restoration treatments (thinning, burning, and thinning +
burning) on nutrient cycling and other ecosystem processes 11 yr after restoration treatments were implemented in a ponderosa pine (Pinus ponderosa var.
scopulorum)/Douglas fir (Pseudotsuga menziesii var. glauca) forest at the Lubrecht Fire and Fire Surrogates Study (FFS) site in western Montana, USA. Despite short-
term (<3 yr) increases in soil inorganic nitrogen (N) pools and N cycling rates following prescribed fire, long-term soil N pools and N mineralization rates showed only
subtle differences from untreated control plots. Similarly, despite a persistent positive correlation between fuels consumed in prescribed burns and several metrics of N
cycling, variability in inorganic N pools decreased significantly since treatments were implemented, indicating a decline in N spatial heterogeneity through time. However,
rates of net nitrification remain significantly higher in a thin + burn treatment relative to other treatments. Short-term declines in forest floor carbon (C) pools have
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pools and fluxes of soil organic N while enhancing nutrient mineralization and improving availability of inorganic forms of N. Sizes 3 : Z
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TasLe 2. Total carbon (C), nitrogen (N), and C:N ratio from mineral soil (0-10 cm) and organic (O) horizons and O horizon bulk
density (B,) from summer 2013 sampling.
Variable Control Thin-only Burn-only Thin + Burn = 31 )
O Horizon 8
B, (z/em?)} 0.093 (0.006) 0.085 (0.003) 0.091 (0.005) 0.097 (0.009) 2 2
Total C (g/kg)t 401.36 (16.23) 383.98 (21.41) 414.17 (14.09) 361.90 (17.73) e
Total N (g/kg)t 11.88 (0.85) 10.51 (1.17) 12.15 (0.87) 13.90 (1.69) g
Total C (Mg/ha)t, *** 12.36° (0.50) 12.16° (0.68) 12.69b (0.43) 8.212 (0.40) § 1 by
Total N (Mg/ha)t 0.37 (0.03) 0.33 (0.04) 0.37(0.03) 0.32 (0.04) £ ! ¥
C:N Ratiof 34.66 (2.76) 38.91 (4.54) 35.05 (2.80) 27.16 (2.12) E . ] %
Mineral soil o - -
Total C (gkg)t 17.59 (3.77) 12.59 (2.36) 12.36 (2.18) 21.62 (4.13) . . : . . )
Total N (gkg)t 0.95 (0.19) 0.72(0.15) 0.77(0.12) 1.17 (0.14) 2000 2002 2004 2006 2008 2010 2012 2014
C:N ratiot 18.61 (2.49) 17.44 (1.33) 16.15 (0.87) 18.90 (0.85) Year
Fic. 2. Totali ic N (TIN trations, (b) net N
Notes: Data presented as mean with SE, n = 3 from sampling in summer 2013. Means followed by the same superscripted letter mine'(.:aumﬁ(;: mo‘:s_ I::;ﬁ-?‘,cm .g,iﬁc".f{i’gﬁ","a{; l,?,nfoz)g) 3&14
are not significantly different at P < 0.05 (Dunnett-Tukey-Kramer post hoc test). and 2013. Treatments include control (solid circles), thin-only
*P <0.05; **P <0.01; ***P<0.001. (solid squalr}cs)A burn-only g)jpen circles), zmc‘lj lh‘ijn + bumF(ope‘rj\
TSigniﬁcance determined via ANOVA triangles). Data are presented as mean *+ standard error (SE). and
1 Significance determined via nonparametric Kruskal-Wallis test. data from 2002 and 2004 are from Gundale et al. (2005).
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Fuel Treatment Effectiveness During Mountain Pine Beetle Outbreak
— Sharon Hood

Take Home Messages:

A mountain pine beetle (MPB) outbreak occurred ~5 years after

treatment implementation (2005-2012).

Ponderosa pine mortality from MPB was highest in the control (50%) and burn-
only (39%) treatments, compared to almost no mortality in the thin-only and
thin-burn treatments.

After the outbreak, ponderosa pine remained dominant in the thin and thin-burn
treatments, but the control and burn-only shifted in species dominance to
Douglas-fir.

The high Douglas-fir component in the control and burn-only treatments due to 20th
century fire exclusion, coupled with high pine mortality from MPB, has likely
reduced resilience of this forest beyond the ability to return to a ponderosa pine-
dominated system in the absence of further fire or mechanical treatment.

Treatments designed to increase resistance to high-severity fire in ponderosa
pine- dominated forests in the Northern Rockies can also increase resistance to
MPB, even during an outbreak.

Block 1

T Figure 1. (A) An area in western

Control

Montana impacted by mountain
pine beetle between 2000 and 2013
Source: USDA Forest Service
Aerial Detection Survey Data. The
black square shows the study site,
the black star shows Helena, state
capital of Montana, and the black
circle shows Missoula. The upper
right box shows the location of
Montana in relation to USA and
Canada. (B) The inset shows the
location of the Fire and Fire

Burn-only Thin-only
Block 2

Control Thin-only

Surrogate study site on Lubrecht
Experimental Forest. (C) MPB
attack intensity (% of MPB host
trees killed by MPB) patterns

Burn-only Thin-burn
_ Block 3 shown in each block by treatment.
Thin-only Burn-only

Black circles indicate location of
0.1-ha plots where attack data was
collected.

"§-
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Figure 2. Mean (SE) of percent of ponderosa pine killed by mountain pine beetle between 2005
and 2012. Different letters indicate mortality is significantly different between treatments (o =
0.05). Study total number of host trees noted below treatment. The inset shows the percentage of
ponderosa pine killed by mountain pine beetle between 2005 and 2012 by experimental block.
Block 1 is white; block 2, light gray; and block 3, dark gray. Boxes denote first and third
quartiles, lines the median, and whiskers the 1.5 inter-quartile range (IQR).
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Figure 3. The ratio of host (ponderosa pine) to non-host (Douglas-fir) basal area before (2005)
and after (2012) the mountain pine beetle outbreak.
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Figure 4. Mean (SE) of forest attributes before (2005) and after (2012) the mountain pine beetle
outbreak by host (ponderosa pine) and non-host (Douglas-fir). (A and B) shows basal area, (C and D)
shows density, and (E and F) shows quadratic mean diameter (QMD). The asterisk denotes a significant
difference before and after the outbreak within a treatment. Lower case letters denote significant
treatment differences before the outbreak, and uppercase letters denote significant treatment differences

after the outbreak.
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Ponderosa Pine Defenses to Mountain Pine Beetle — Sharon Hood
Take Home Messages:

» Resin duct-related traits provide resistance against bark beetles. Trees killed by bark
beetles invest less in resin ducts relative to trees that survive attack

* Low-severity fire can induce resin duct production and resin duct production declines
when fire ceases.

» Low-severity fire can trigger a long-lasting induced defense.

» At the Lubrecht FFS site, thinning treatments, with or without fire, dramatically increased
tree growth and resin ducts relative to control and burn-only treatments.

* Prescribed burning in the Lubrecht FFS study did not increase resin ducts but did cause
changes in resin chemistry that may have affected MPB communication and lowered
attack success.

- Forest management that encourages healthy, vigorously growing trees will also favor
larger resin ducts, thereby conferring increased constitutive resistance to bark beetle

attack.
4.0 Montana T ors v 257 Utah T 025 .
= >
35 E £00
E 010 2.0- £ 015
3.0+ [ Unburned g 2 010
B surned @ 003 S 005
25 1 3 15 - 3
A 000 0.00
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0.5 4

0.0

Departure from relative duct area
(percentage of annual ring)

0.5 1

1.5 e e e e e e e e M ———————
Time Time

Figure 5. Departure (mean + SE) from average total axial resin duct area by year for burned and
unburned ponderosa pine trees at Montana and Utah sites. Fire occurrence is denoted as time = 0;
negative values are years before fire and positive values are years after fire. Insets show total resin duct
area (adjusted mean + SE) after accounting for ring area based on 5 mm wide samples. Inset for the
Montana site total duct area is one year before and after fire, and inset for the Utah site total duct area is
the second year before and after fire. An asterisk (*) indicates duct area increased after fire on burned
trees.
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Figure 6. Ponderosa pine axial resin duct area (adjusted mean + SE) before and after fire cessation in
Idaho and Oregon after accounting for ring area based on a 5 mm core diameter. We defined fire
cessation as the period following the last recorded fire at a site, determined from tree-ring
reconstructions. The Idaho site was divided into two areas: open circles are fires that ceased in the 20th
century, solid circles are fires that continued in the 20th century. Asterisks (*) indicate duct area
decreased after fire exclusion after 1870 in Oregon and after 1925 in Idaho.

* P<0.05; ** P<0.01
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Figure 7. (A) Yearly mean basal area increment and (B) total duct area by treatment. Error bars are
standard error. Arrows denote year of thinning (winter 2000/2001) and prescribed burn (Spring 2002).

Further Reading:

Hood, S., Baker, S. & Sala, A. (2016) Fortifying the Forest: Thinning and Burning Increase
Resistance to a Bark Beetle Outbreak and Promote Forest Resilience. Ecological
Applications, 26, 1984-2000.

Hood, S., Sala, A., Heyerdahl, E.K. & Boutin, M. (2015) Low-severity fire increases tree defense
against bark beetle attacks. Ecology, 96, 1846-1855.

Hood, S. & Sala, A. (2015) Ponderosa pine resin defenses and growth: metrics matter. 7Tree
Physiology, 35, 1223-1235.

Six, D.L. and K. Skov. 2009. Response of bark beetles and their natural enemies to fire and
fire surrogate treatments in mixed-conifer forests in western Montana. Forest
Ecology and Management 258: 761-772.
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Vegetation dynamics in the F&FS Study — Justin Crotteau
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Figure 1. Overstory diameter distribution by species after treatment at Lubrecht’s Fire & Fire
Surrogate Study. From left to right panels show distribution in 2002 (immediately after
treatment), 2016, and then change in distribution between those years.
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Figure 2. Regeneration size class distribution by species after treatment at Lubrecht’s Fire & Fire
Surrogate Study. From left to right panels show distribution in 2002 (immediately after treatment),
2016, and then change in distribution between those years. SS1="seedling” (10 cm < height <50
cm), SS2 =“large seedling” (50 cm < height < 137 cm), SS3=“small sapling” (0.1 cm < dbh <3 cm),
SS4="“medium sapling” (3 cm < dbh < 6 cm), and SS5="“large sapling” (6 cm < dbh < 10.16 cm).
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Figure 3. Forest structure and composition at Lubrecht’s Fire & Fire Surrogate Study. Bars show
treatment means and standard error by year: 2002 (immediately after treatment), 2005, and 2016.
Regeneration density, regeneration composition, and canopy cover were not measured in 2005.
Significant ANOVA factors (p-values < 0.1) are shown with text at the top of each panel. Letters
above bars show pairwise differences (0=0.05) within treatment between years (lowercase) and

within year between treatments (uppercase).
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Fuel dynamics and crown fire hazard in the F&FS Study — Justin

Crotteau
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Figure 1. Fuel loads immediately after treatment
and in 2016 in the Fire & Fire Surrogate Study. Fine
woody debris includes downed woody material < 3”
diameter; large woody debris, >3”; forest floor
includes litter and duff; canopy fuel includes
attached foliage and half of canopy 1-hr fuels.
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Figure 2. Crown fire hazard metrics immediately
after treatment and in 2016 in the Fire & Fire
Surrogate Study. p(Torch) is the probability of
torching, i.e., fire transition from surface to
overstory. Crowning index is the 18 foot windspeed
necessary for canopy to actively carry crown fire.

Table 1. Fire modeling details immediately after treatment and in 2016 in the Fire & Fire Surrogate Study.
Calculated in FFE-FVS under “severe” conditions (4% 10-hr moisture, 70°F, 20 mph 18-ft windspeed).

Primary fuel model

Predicted fire type

Surface flame

Year Treatment 8 10 12 13 length Surface Cond'l Passive Active
2002 Control 67 (3) 27(7) 7(3) 0(0) 0.83(0.01) 63(13) 23(12) 13 (3) 0 (0)
2002 Burn-only 93 (3) 7 (3) 0(0) 0(0) 0.43 (0.06) 80(10) 20 (10) 0(0) 0 (0)
2002 Thin-only 53(3) 30(0) 17(3) 0(0) 1.54 (0.03) 87 (3) 0(0) 13 (3) 0 (0)
2002 Thin+Burn 93 (3) 3(3) 3(3) 0(0) 0.71(0.13) 100 (0) 0(0) 0(0) 0 (0)
2016 Control' 33(20) 40(15) 23(19) 3(3) 1.56 (0.32) 40(15) 17(12) 40(15) 3(3)
2016 Burn-only' 37(9) 50(10) 13(3) 0(0) 1.50(0.13) 70(12) 7 (7) 23 (7) 0 (0)
2016 Thin-only' 70(6) 30(6) 0(0) 0(0) 1.11 (0.03) 83 (3) 0(0) 17 (3) 0 (0)
2016 Thin+Burn' 60(0) 40(0) 0(0) 0(0) 1.47 (0.11) 90 (6) 0 (0) 10 (6) 0 (0)
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Short-Term Response of Bark Beetles to FFS Treatments — Diana Six

The fire and fire surrogate study provided a rare opportunity to study thinning and fire treatment effects in
mixed conifer forests in a fully-replicated operational-size controlled experiment. It also, quite by chance,

allowed for the first replicated study with these treatments to follow mountain pine beetle through all

population phases of an outbreak. The results of the bark beetle study for 2000-2008 are presented in Six,

D.L. and K. Skov. 2010. Response of bark beetles and their natural enemies to fire and fire surrogate
treatments in mixed conifer forests in western Montana, Forest Ecology and Management 258: 761-772.

Objectives: Short-term: 2000-2004

Assess bark beetle responses to fire and fire surrogate treatments

Assess fire effects on trees (crown and bole scorch, ground char) and correlate those to beetle responses
Assess constitutive tree defenses to bark beetles after treatment

Assess responses of natural enemies of bark beetles to treatments

Short-term results: 2000-2004 beetle responses
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Fg. 1. Number of Douglas-fir killed by Douglas-fir beetle in (A) contral, (B) thin-only, (C) burn-only and (D) thin-and-burn treatments at Lubrecht Forest, MT (2000-2004)

Open arrows indicate timing of thinning treatments; bold arrows indicate timing of bum treatments
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Fig.2. Number of ponderosa pines (PIPO) killed by pine engraver in (A) control (B) thin-only, (C)bum-only and (D) thin-and-burn treatments at Lubrecht Forest, MT(2000-
2004} Open arrows indicate timing of thinning treatments; bold arrows indicate timing of bum treatments
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Fig. 3. Number of ponderasa pines (PIPO) killed by westem pine beetle in (A) control, (B) thin-only, (C) bum-only and (D) thin-and-burn treatments at Lubrecht Forest, MT
(2000-2004). Open arrows indicate timing of thinning treatments; bokl armows indicate timing of burn treatments.
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Fig.4. Number of ponde rasa pine (PIPO) or lodgepole pine (PIQD) killed by mountain pinebeetle in (A) control, (B) thin-only, (C)bum-only and (D) thin-and-bum treatments
at Lubrecht Forest, MT (2000-2004) Open arrows indicate timing of thinning treatments; bold arrows indicate timing of bum treatments
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Fig. 5. Number of ponderosa pine (PIPO) or kdgepale pine (PICO) colonized by red turpentine beetle in (A) control (B) thin-only, (C) bum-only and (D) thin-and-bum
treatments at Lubrecht Forest, MT (2000-2004). Open arrows indicate timing of thinning treatments; bald arrows indicate timing of burn treatments.

Short-term effects: 2005-2008

Mortality remained very low. No additional mortality due to Douglas-fir beetle, western pine beetle or
pine engraver was observed. Red turpentine beetle continued to attack trees in treated plots but none were
observed in trees in control plots. Mountain pine beetle killed 11 trees over the three years (6 in control
plots, 4 in burn only, and 1 in thin and burn).
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