Characteristics of whitebark pine (*Pinus albicaulis*) growth and defense in response to disturbance

Nick Kichas – Montana State University Sharon Hood – U. S. Forest Service Greg Pederson – U. S. Geological Survey Rick Everett – Salish Kootenai College Dave McWethy – Montana State University

In collaboration with:

Confederated Salish and Kootenai Tribes Salish Kootenai College Salish & Kootenai Culture Committees

Rich Jannsen – CSKT Natural Resource Department

Tony Incashola, Jr. – CSKT Forestry

Jim Durglo – CSKT Forestry

Michael Durglo, Jr. – Tribal Preservation Department

Flathead

Indian

Reservation

Moss Peak

Limited Early Human-Use Sites Intensive Early Human-Use Sites

Three Lakes

20

10

6

30

Kilometers

Rethbow Lake

N

National Bison Range

Twin Lakes

Three Lakes Peak

- 225 whitebark sampled
 - ~ 73% Mortality

For this study: 60 trees (30 live / 30 dead)

Boulder

- 476 whitebark sampled
 - ~ 86% Mortality

For this study: 84 trees (42 live / 42 dead)

72 pairs (144 total trees)

Resin Ducts: Important for Defense

Oecologia (2010) 164:601–609 DOI 10.1007/s00442-010-1683-4	Tree Physiology 35, 112–123 doi:10.1093/treephys/tpu106			
PHYSIOLOGICAL ECOLOGY - ORIGINAL PAPER	Research paper			
Importance of resin ducts in reducing ponderosa pine mortality from bark beetle attack	Differentiation of persistent anatomical defensive structures is costly and determined by nutrient availability and genetic growth-defence constraints			
Tree Physiology 35, 1222-1235	Xoaquín Moreira ^{1,4} , Rafael Zas ² , Alejandro Solla ³ and Luis Sampedro ²			
doi:10.1093/treephys/tpv098 Research paper	Article			
Ponderosa pine resin defenses and growth: metrics matter	Contrasting Impacts of Climate and Competition on			
Sharon Hood ^{1,2,3} and Anna Sala ¹	Fire-Excluded Forest of the Central Sierra Nevada			
Oecologia (2014) 174:1283–1292 DOI 10.1007/s00442-013-2841-2	Andrew W. Slack ^{1,2,*} , Jeffrey M. Kane ¹ , Eric E. Knapp ³ and Rosemary L. Sherriff ^{1,4}			
PLANT-MICROBE-ANIMAL INTERACTIONS - ORIGINAL RESEARCH	Ecological Applications, 0(0), 2016, pp. 1–17 © 2016 by the Ecological Society of America			
Resin duct characteristics associated with tree resistance to bark beetles across lodgepole and limber pines	Fortifying the forest: thinning and burning increase resistance to a bark beetle outbreak and promote forest resilience Sharon M. Hood, ^{1,2,3} Stephen Baker, ¹ and Anna Sala ²			
ORIGINAL ARTICLE WILEY MICH	Tree Physiology 35, 107–111 doi:10.1093/treephys/tpv015			
Anatomical defences against bark beetles relate to degree of historical exposure between species and are allocated independently of chemical defences within trees	Commentary To grow or defend? Pine seedlings grow less but induce more defences when a key resource is limited			
Charles J. Mason ¹ Ken Keefover-Ring ² Caterina Villari ³ Jennifer G. Klutsch ⁴ Stephen Cook ⁵ Pierluigi Bonello ³ Nadir Erbilgin ⁴ Kenneth F. Raffa ⁶	Scott Ferrenberg ^{1,4,5} , Jeffrey M. Kane ² and Joseph M. Langenhan ³			
Philip A. Townsend ⁷	New Phytologist Research			
Low-severity fire increases tree defense against bark beetle attacks	Drought predisposes piñon–juniper woodlands to insect attacks and mortality			
Sharon Hood, ^{1,4} Anna Sala, ¹ Emily K. Heyerdahl, ² and Marion Boutin ³	Monica L. Gaylord ¹ , Thomas E. Kolb ¹ , William T. Pockman ² , Jennifer A. Plaut ² , Enrico A.Yepez ^{2,3} , Alison K. Macalady ⁴ , Robert E. Pangle ² and Nate G. McDowell ⁵			

Live

Differences in Physiology (radial growth / resin duct properties)?

What physiological properties inform survivorship?

H₁: live whitebark pines will exhibit more rapid and sustained growth than dead whitebark pines, during the overlap of their lifespan (Ferrenberg *et al.* 2014, Hood & Sala 2015, Hood *et al.* 2016).

 H_2 : live whitebark pines will have more robust defensive features (increased resinduct size, density, and cumulative area) than dead whitebark pines, during the overlap of their lifespan.

(Kane & Kolb 2010, Ferrenberg et al. 2014, Hood et al. 2015)

Duct Production

(total # of ducts per annual ring)

Duct Size

Duct Area

(Sum of duct area per annual ring) Live Dead

Duct Density

(Total # of ducts per annual ring divided by ring area)

Live

••	••	••	••	••	••	••
•••	•••	•••	•••	•••	•••	•••

Relative Area (%)

(Total duct area divided by ring area x 100)

Live

PC 1: resin duct size, resin duct area, resin duct relative area, duct density

PC 2: growth (RWI), resin duct production

Conditional Density Plot

describes how the conditional distribution of a categorical variable (**Y**) changes over a numerical variable (**X**)

Conditional Density Plot

describes how the conditional distribution of a categorical variable (**Y**) changes over a numerical variable (**X**)

Summary

• Mean resin duct size and relative duct area were greater in trees that survived recent disturbances.

• Resin duct size and relative duct area were the most important variables for predicting mortality.

First evidence (*to our knowledge*) comparing growth and defense across pairs of live and dead whitebark pine.

Multiple disturbances select for complex growth / defense strategies in whitebark pine.

Important to maintain genetic diversity (buffers against future change).

Next Steps: Chemical Ecology of Whitebark Pine

Next Steps: Chemical Ecology of Whitebark Pine

Next Steps: Chemical Ecology of Whitebark Pine

PC 1: α -pinene, β -myrcene, δ -limonene, sabinene

PC 2:, α -phellandrene, β -phellandrene, β -ocimene

Thank You!

Confederated Salish and Kootenai Tribes

Salish Kootenai College

Salish & Kootenai Culture Committees

Rich Jannsen Tony Incashola, Jr. Jim Durglo Michael Durglo, Jr.

Advisory Committee David McWethy Gregory Pederson

Richard Everett Sharon Hood

Collaborators

- Emily Heyerdahl
- Robert Keane
- Amy Trowbridge

Research Assistance

- Danny Stahle
- Cathy Whitlock
- MSU Paleoecology Lab:
 - Pico Alt
 - Peter Billman
 - Buzz Nanavati
 - Christopher Schiller
 - Shelby Sly
 - Barbara Ulrich
 - Matthew Weingart
 - John Wendt

Field Assistance

- Mckenzie Rides at the Door
- ShiNaasha Pete
- Tamara Birdsbill
- Joesef Andrews
- Derek Snyder
- Catherine Hopstad

Lab Assistance

- Zachary Gigone
- Aden Norris

Questions?

STA.