Burn severity, tree regeneration, and carbon storage—are reburns different?

Monica G. Turner¹, Brian J. Harvey², Winslow D. Hansen¹, and Kristin H. Braziunas¹ ¹Dept. of Integrative Biology, University of Wisconsin – Madison ²School of Environmental and Forest Sciences, University of Washington

Acknowledgements

Summer 2017 field season

- Bill Romme
- Tyler Hoecker
- Zak Ratajczak
- Tanjona Ramiadantsoa
- Jacob Gold
- Shauna Jacobs
- Deirdre Turner
- Nathan Gill
- Ann Olsson
- Kristen Emmett
- Saba Saberi
- Allie Orrego
- Diane Abendroth
- Ron Steffens

Funding

- National Science Foundation RAPID
- Vilas Trust, UW-Madison
- Joint Fire Science Program

Thanks also to

- Yellowstone National Park
- Grand Teton National Park
- UW-NPS Research Center

Forest resilience

<u>**Resilience</u>**: capacity of system to tolerate disturbances without shifting to qualitatively different state (*Resilience Alliance 2012*)</u>

(Ratjczak et al. 2018, TREE)

Forest resilience

<u>**Resilience</u>**: capacity of system to tolerate disturbance without shifting to qualitatively different state (*Resilience Alliance 2012*)</u>

As fire-return intervals shorten, could forest ecosystems "ratchet down" if forests reburn before they recover?

1988 Yellowstone Fires

Consequences well studied

- Landscape mosaic of fire severity
 - (Turner et al. 1994)

Tree regeneration and vegetative cover

(Turner et al. 1997, 1999, 2003, 2004; Schoennagel et al. 2003, 2004; Kashian et al. 2004; Turner 2010; Romme et al. 2011; Donato et al. 2016)

Plant community composition

(Romme et al 2016)

Coarse wood dynamics and fuels

(Tinker and Knight 2000, 2001, 2004; Nelson et al 2016, 2017)

Biomass, primary productivity, decomposition, carbon, nitrogen

(Turner et al. 2004, 2007, 2009, 2011, 2016; Kashian et al. 2005, 2006, 2013; Remsburg and Turner 2006, Metzger et al. 2008, Smithwick et al. 2009, Copenhaver and Tinker 2014)

Vegetation recovered very rapidly

National Geographic March 2016 Source info: M.G. Turner

After 25 yrs...stand development

Postfire year 24 lodgepole pine stem density

After 25 yrs...fuels

- Meet or exceed fuels in mature forest
 - Available canopy fuels (8.5 Mg/ha)
 - Canopy bulk density (0.25 kg/m³)
 - Total surface fuels (123 Mg/ha)
- Fuels can support fire
 - 76% of stands have 1000-hr fuels > levels associated with high-severity surface fire
 - 63% of stands have canopy fuels > levels associated with active crown fire potential

(Nelson et al. 2016, Ecol Applica; Nelson et al. 2017, IJWF)

Long-interval fire

(Turner et al. 1997, Ecol. Monogr.; Turner et al. 2004, Ecosystems; Turner 2010, Ecology)

90% of carbon stocks recovered in 100 yrs

(Kashian et al. 2013, Ecol Monogr)

(Tinker & Knight 2000, 2001, 2004)

Short-interval fire?

Fuels in young lodgepole pine forests

Short-interval fire and forest resilience

2016 Yellowstone Fires

Area burned ~ 40,000 ha Short-interval fire = 18,000 ha

Summer 2017 field campaign (*n* = 27 plots) Sites: *n* = 3 (16 or 28 yr FRI)

Summer 2017 field campaign (*n* = 27 plots) Sites: *n* = 3 (16 or 28 yr FRI) Plots per site: *n* = 6 stand-replacing reburns, *n* = 3 not reburned

Field sampling (50 x 50 m plots)

Burn severity

(30-m diameter circular plot)

- % cover of char, soil, live vegetation
- Char height, bole scorch, on trees
- Pre- vs postfire stems & stumps

Tree regeneration

(three 50 x 2 m belt transects)

Postfire tree seedlings

Carbon stocks

Downed coarse wood % cover, biomass

(>7.5 cm diameter; line and planar intercept, three 30-m transects)

Live and dead aboveground C pools

(local allometric equations)

Within sites: Stand structure similar in plots that did and did not reburn

- Mean down coarse wood = 82 Mg/ha
- Mean tree density = 36,300 stems/ha (range 500 - 108,000)

No reburn

Results: Burn severity

- Typical for stand-replacing fire
 - Bole scorch = 98 ± 2%
 - Char height = 0.85 ± 0.06 of tree ht
 - Charred surface = 64 ± 6%

Results: Burn severity

- Typical for stand-replacing fire
 - Bole scorch = 98 ± 2%
 - Char height = 0.85 ± 0.06 of tree ht
 - Charred surface = 64 ± 6%

- BUT...also included much higher burn severity than observed in any other fires (Crown +)
 - Nearly complete combustion

Stem combustion: the more you had, the more you lost

Dense packing of small trees -> Crown fire +

Postfire stumps vs. Prefire stems

Results: Tree regeneration

- Less regeneration with reburn (short FRI)
 - But trees present on all plots (633 to 39,600 seedlings/ha)

Results: Tree regeneration

Greater decline with higher prefire density (r = -0.73, p = 0.0006)

Sparse → sparse

Prefire stems = 500/ha Postfire seedlings = 1100/ha

Dense \rightarrow sparse (-99%)

Prefire stems = 105,533/ha Postfire seedlings = 833/ha

Results: Tree regeneration

More tree seedlings with more cones still present after reburns (r = 0.62, p = 0.0059)

Results: Down coarse wood

Coarse wood % cover reduced by ~half in reburns

Results: Down coarse wood

- Coarse wood biomass reduced by two-thirds in reburns
 - Much more combusted with short FRI

Fire interval	Percent lost	Biomass lost
Long (> 100 yrs) (Tinker & Knight 2000)	16%	~10 Mg/ha
Short (16-28 yrs) (this study)	65%	53 Mg/ha

Reburn

No reburn

- Down coarse wood
- Standing dead
- Live tree

- Amount of C loss (Mg/ha) unrelated to prefire tree density or biomass
- Percent of C loss greater with small-diameter trees
 - Declines ranged from 32-96%

Longer-term consequences?

- Individual-based forest landscape and disturbance model (Seidl et al. 2012 Ecol Modelling, 2014 Eco Apps)
 - Parameterized, well tested for Greater Yellowstone

(Hansen et al. 2018 Ecology, Braziunas et al. in revision FEM)

Simulated the reburned stands (1-ha) for 150 yrs

- With and without the 2016 reburn
- Historical climate (1980-2017), random with replacement
- No subsequent disturbances
- Compare aboveground live and dead C stocks

http://iland.boku.ac.at/

Down coarse wood does not recover in 150 yrs

Recovery of live tree C takes ~60 yrs

Aboveground C recovery takes > 65 yrs

Summary

Conclusions

Indicators of forest resilience declined with reburns, especially with *Crown fire* +

- Short FRI alone did not cause transition to non-forest
- Initially, forest structure may change more than extent
- Forests may be pushed beyond their limits and "ratchet down" if current trends in climate and fire continue

