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Abstract 
Foliar moisture content (FMC) plays a crucial role in the arid, fire-adapted forests of the 

western US by influencing fire behavior, tree survival, and serving as a proxy for tree health. 
Management actions such as mechanical thinning and prescribed fire mitigate wildfire risk and 
improve forest health by reducing fuel connectivity, diversifying forest structure, and creating 
canopy gaps. These management actions could be improved by the targeted removal of 
moisture stressed trees during treatments. However, maps of FMC are not widely available at 
the tree-level, with no existing products to map FMC of western conifers at ultra-high resolution. 
This project focuses on the scalability of a laboratory-developed models of sapling FMC to 
develop an assess tree-level FMC in natural forest conditions. Specifically, we tested: Can 
existing FMC models accurately predict individual tree FMC using uncrewed aerial system (UAS) 
data? Field testing demonstrated that while laboratory-based models yielded low accuracies 
and a field-developed model only explained ~31% of the variation, the field model successfully 
classified trees into FMC categories (i.e. 10% lowest FMC, 90% highest FMC) with up to 89.8% 
accuracy. The successful classification demonstrates strong potential for UAS-based FMC 
mapping to inform management prescriptions. The integration of UAS-derived FMC 
classification into forest management decision workflows will enhance forest resilience and the 
adaptive capacity of managers. 
 

Objectives  
 The objectives of this project were to 1) test the application of lab-developed models of 
drought stress and foliar moisture content from Lad et al. (2023) to natural forest systems, and 
2) test the development of field-developed models of relative foliar moisture content. The 
successful completion of these objectives will improve our knowledge on the scalability of 
laboratory-based models and highlight any difficulties in scaling models from controlled 
settings to natural forests. Further, the successful completion of objective 2 will represent an 
advancement toward the application of site-specific models of foliar moisture content to inform 
resilience-minded forest management.  

Background 
Anthropogenic climate change is projected to increase the severity and intensity of 

drought across the Southwestern United States (Cook et al., 2015), particularly impacting 
western conifer forests through increasing temperatures, precipitation deficits (Cook et al., 
2018), and decreased soil water storage (Liu et al., 2019, Bolinger et al., 2023). Between 2000 and 
2019 CE, southwestern North America experienced its second driest two decades since 800 CE, 
resulting in a regional megadrought (Williams et al., 2020). This region is projected to 
experience continued trends of increasing temperatures coupled with variable precipitation 
(Bolinger et al., 2023). Temperature-driven decreases in soil water availability and higher plant 
water demand are contributing to plant-level physiological stress that reduces resilience to 
current and future drought (Breshears et al., 2005, Williams et al., 2012). Drought-induced 
physiological stress in trees reduces their resilience to fire and insect attacks (Sparks et al., 
2024). Lower water availability affects trees by reducing foliar moisture content, nutrient uptake, 
and sap flux, all of which contribute to a tree’s ability to withstand disturbances (Kreuzwieser & 
Gessler, 2010, Ryan, 2011). Drought stress is being compounded by stand density increases from 
historic norms (Mast et al., 1998) due to a legacy of fire suppression over the last century (Littell 
et al., 2016), which increases forest water demands and further stresses trees (Zhang et al., 
2019). These compounding climate and management-induced demands on moisture availability 
then make forests more susceptible to drought-, fire-, and insect-induced mortality (Williams et 
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al., 2013).  
The interaction of drought and stand density stresses contribute to increases in mortality 

that can drive increases in fine, dead woody fuel accumulation (Ruthrof et al., 2016). 
Furthermore, increasing temperatures are driving decreases in surface fuel moisture, increasing 
the likelihood of ignition, fire hazard, and extreme fire days (Alexander & Cruz, 2013, Flannigan 
et al., 2015). Reduced moisture in both surface and canopy fuels increase the likelihood of fires 
transitioning from surface and ground fires into ladder fuels and the overstory, resulting in 
crown fires. Alterations to the drought, fire, and pest disturbance regimes, coupled with 
persistent drought in an era of climate change, may facilitate changes to forest successional 
pathways that result in ecosystem conversion following disturbance-induced mortality (Batllori 
et al., 2020, Coop et al. 2020). Thus, forest managers must consider the current climate and the 
projected increase in hot drought conditions, and work to maintain forest resilience in the face 
of increasing and compounding disturbances. 

A major indicator of water availability in forests is foliar moisture content. Foliar moisture 
content (FMC) responds to vegetation health and is a surrogate for individual plant resilience to 
weather, climatic oscillations, and disturbances (Keyes, 2006, Zhang et al., 2019, Sparks et al., 
2024). Further, FMC changes daily based on evapotranspiration and water loss, or through 
precipitation and water uptake (Groover, 2017). Beyond indicating the relative water content in 
plant material, FMC provides an estimate of fire risk and rate of spread (Jolly & Hadlow, 2012). 
Conventional measures of foliar moisture require the collection of foliage from each plant and a 
comparison of the foliage’s dry and wet weight (Jolly & Hadlow, 2012), providing a sample of 
data to represent an entire population. The need to sample individual plants and oven-dry 
specimens limits data extent and delays the availability of foliar moisture observations after 
collection. As such, there is limited capacity to collect rapid, spatially continuous measures of 
foliar moisture, particularly across management scales (i.e., 10s to 100s hectares).  

Satellite-based remote sensing can supplement field data collection to provide 
landscape-scale assessments of ecosystem stress (Lentile et al., 2006). Landsat and Sentinel 
collect multispectral imagery at 30 m and 20 m spatial resolution, respectively, and at 16- and 8-
day return intervals. Plant water status is commonly assessed using spectral indices like the 
Normalized Difference Vegetation Index (NDVI, Rouse, 1974), Normalized Difference Water 
Index (NDWI, Gao, 1996), or thermal imagery (Pierce et al., 1990). These moderate-resolution 
satellite sensors average across multiple species, vegetation strata, and substrates within a 
single pixel, washing out plant and species level variation (Lentile et al., 2006). Thus, forest 
managers cannot easily leverage this moderate spatial resolution to inform management 
decisions about which trees to retain or cut during thinning operations.  

Uncrewed Aerial Systems (UAS) offer a potential solution to these limitations as the 
temporal resolution can be controlled by users and the high spatial resolution imagery can be 
smaller than 3 cm (Perez-Rodriguez et al., 2019). Recent advances in UAS tree-level mapping 
have been successful in creating near-census maps of tree locations, heights, and diameters at 
breast height (DBHs) in dry, more open canopy conifer forests (Swayze et al., 2021, Tinkham et 
al., 2022). As these techniques become refined, UAS estimates of basal area and tree density 
achieve precisions of 5% to 10% (Tinkham & Woolsey, 2024) and spatial patterns match field 
collected data (Hanna et al., 2024). Additionally, several studies have attempted to use UAS 
multispectral and thermal imagery to estimate FMC or similar vegetation moisture and health 
metrics for agricultural and crop tree (i.e., cherry, olive, citrus, and chestnut trees) applications 
with varying success (Ezenne et al., 2019, Blanco et al., 2020, Garza et al., 2020, Grulke et al., 
2020, Padua et al., 2020, Marques et al., 2023). In a Northeastern United States forest, Fraser & 
Congalton (2021) were able to classify between healthy, disturbed through either disease or 
pests, and degraded trees with 71% accuracy. In a European mixed-conifer forest, Abdollahnejad 
& Panagiotidis (2020) used multispectral imagery and a support vector machine classifier to 
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classify leaf discoloration as an indicator of health with 84.7% accuracy. These studies show 
promise for tree-health assessments from UAS multispectral remote sensing, but no studies 
have examined the disturbance-adapted mixed-conifer forests of the Rocky Mountains, which 
are particularly at risk for future drought events.  

Previous work on individual conifer tree FMC remote sensing used a laboratory setting to 
develop models to classify drought-stress status and predict continuous FMC from the spectral 
bands available on a consumer-grade multispectral UAS camera for both a short-needle and 
long-needle conifer species (Lad et al., 2023). This previous effort examined two conifer species 
at various levels of drought stress to classify drought status and predict FMC (Lad et al., 2023). 
Similar to studies monitoring crop FMC, Lad et al. (2023) found that indices such as the NDVI 
(Normalized Difference Vegetation Index) and PRI (Photochemical Reflectance Index), along with 
the red edge spectral range (700-720 nm) were the strongest predictors in modeling drought-
stress in both short- and long-needle western conifers. D’Odorico et al. (2021) and Vicca et al. 
(2016) found that PRI was sensitive to real-time changes in photochemical efficiency, 
highlighting its utility for assessing tree health changes. Sparks et al. (2016) found that a pre- 
and post-burning differenced NDVI quantified vegetation stress and burn severity with a high 
correlation to photosynthetic activity (r2=0.73-0.85) following a laboratory burn. These 
modeling approaches, while promising, need to be validated through testing in mature forests 
of varying densities and drought conditions. Specifically, scaling these models to mature trees 
may present challenges to accurate quantification of FMC resulting from intra-tree variability or 
shadowing of lower branches.  

Drought, as represented by decreased FMC, is and will continue to be a driving force of 
forest health and disturbance risk and recovery, underscoring its importance as a metric to 
describe forest conditions and to inform management actions. However, no comprehensive 
methods have yet been validated to predict tree-level FMC in forests. Lad et al. (2023) found 
that a logistic regression and multiple linear regression model using NDVI, PRI, and red edge 
spectra were effective in identifying drought stress of saplings. Thus, this study will further 
validate these models in two mature mixed-conifer forests in northern Colorado. Using the 
models developed by Lad et al. (2023) we answered the question: Can laboratory-developed 
models of drought stress be used to identify the gradient of drought stress in a mixed-species 
conifer forest? 

Methods 

Data Collection 
To capture a gradient of FMC, this study was conducted at field sites with varying 

management histories and topographic complexities. The Estes Park (EP) site was dominated by 
a northwesterly aspect on a 7-60% slope covering 4.18 hectares and was hand thinned in 2012 
to create an open mixed-conifer stand of ponderosa pine (Pinus ponderosa Lawson & C. 
Lawson) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. glauca (Beissn.) Franco). The 
Red Feather Lakes (RFL) site was an untreated 6.0 hectacre area of open mixed-conifer forest of 
ponderosa pine and Douglas-fir occupying a small hill (slope=1-65%) with all aspects covered 
and featuring exposed rocky outcroppings (Figure 1).  
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Figure 1: UAS flight boundaries and derived true color imagery of the A) Red Feather Lakes (RFL) site and B) Estes Park (EP) 
site with the ESRI Outdoor base map. 

Prior to FMC monitoring, field survey trees were selected in a random approach wherein 
50 random points were generated at each site, with the nearest dominant or codominant 
ponderosa pine or Douglas-fir tree identified for sampling. Limiting to dominant and 
codominant trees was done to ensure reliable extraction from the UAS point cloud to allow for 
the testing of these drought models. The sample trees had their height, diameter at breast 
height (DBH), crown base height (CBH), and species recorded, along with their location using an 
Emlid Reach RS2+ real-time kinematic GPS (Emlid Tech Kft, Budapest, Hungary).  

Each site was sampled two times, for a total of four collection dates and 199 foliar 
moisture samples (Table 1). On each collection date, needle collection began at approximately 
10:00 and continued until 12:00 when UAS flights were conducted. Following UAS flights, any 
remaining trees were sampled, with all moisture samples collected within 2 hours of the UAS 
acquisition. Needle collection for each tree involved using loppers on an extending pole to clip 
bundles of needles in each cardinal direction and at varying tree heights. A minimum of four 
bundles were clipped from each tree and placed in a weighed and labeled plastic bag and 
stored in a cooler until they could be processed in the lab that afternoon. Variations in tree 
height and CBH meant that some samples could only be collected from the lower and middle 
third of the crown of some individuals. Testing was done on a subsample of trees where FMC 
could be assessed in the lower, middle, and upper third of individual crowns, with a paired t-test 
showing no significant differences (p=0.12). 

 
Table 1: Mean (standard deviation) of sample trees across the three study sites along with dates of the FMC 
collections. 

Site 
ponderosa pine Douglas-fir 

Collection Dates DBH 
(cm) 

Heigh
t (m) 

CBH 
(m) 

DBH 
(cm) 

Heigh
t (m) 

CBH 
(m) 

Estes Park (EP) 
29.4 
(7.7) 

13.9 
(2.2) 

3.5 
(1.0) 

30.7 
(12.4) 

14.4 
(3.5) 

2.0 
(1.0) July 27 Sept. 18 

Red Feather 
Lakes (RFL) 

29.0 
(11.3) 

10.2 
(3.1) 

2.4 
(1.2) 

22.3 
(6.8) 

9.3 
(2.9) 

0.7 
(0.5) July 25 Oct. 16 

 
In the lab, bundles were removed from their plastic bag, stripped their needles and 

cones from the branch, and added only the needles back to the bag. The wet needle weight for 
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each tree was measured by subtracting the plastic bag's weight from the needles in the bag. All 
wet weights were recorded within six hours of field sample collection. Then, needles were 
transferred to paper bags and dried in an oven at 105 degrees Fahrenheit for at least 48 hours, 
or until the dry weight had stabilized (Matthews, 2010). Once dry, the dry weight of each sample 
was measured by weighing the dried needles on a tared scale. All weights were recorded using 
an OHAUS scale with a precision of 0.01 grams (OHAUS Corporation, Parsippany, NJ, USA). The 
FMC of each sample was calculated using equation 1 (Jolly & Hadlow, 2012). 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑀𝑀𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝑀𝑀 𝐶𝐶𝐹𝐹𝐶𝐶𝑀𝑀𝑀𝑀𝐶𝐶𝑀𝑀 = (𝑊𝑊𝑊𝑊𝑊𝑊 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑊𝑊−𝐷𝐷𝐷𝐷𝐷𝐷 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑊𝑊)
𝐷𝐷𝐷𝐷𝐷𝐷 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑊𝑊

 𝑥𝑥 100    [1] 

UAS flights were conducted as close to 12:00 as possible to align with the sun’s peak and 
reduce shadowing in the imagery. Acquisitions were conducted using a DJI Matrice 210V2 (DJI, 
Shenzhen, China) with a Micasense 10-band Dual-Camera system attached (Micasense, Seattle, 
WA, USA) and lasted an average of 20 minutes at each site. Prior to takeoff and immediately 
after landing, manual captures were taken of the Micasense reflectance panels. These images 
allowed us to capture 100% reflectance and were used to correct for inconsistencies in lighting 
during the flights. All flights used a serpentine flight pattern at 90 m above ground level and at 
a speed of 6 m s-1 with 85% forward and 80% cross-track image overlap. The Micasense system 
captured 10-band multispectral imagery (Table 2) at 6.3 cm resolution. Ground control points 
(GCPs) were used at each site to ensure spatial accuracy of image alignment. These GCPs were 
chosen based on visibility from above, spacing across the sites, and had their locations recorded 
using an Emlid Reach RS2+ real-time kinematic GPS (Emlid Tech Kft, Budapest, Hungary). The 
GCPs had a reported average horizontal and vertical root mean square error of 0.038 m and 
0.077 m, respectively. 

 
Table 2: List of bands available on the Micasense Dual-Camera System and the wavelengths covered by each band. 

MicaSense Band MicaSense λ 
Blue 430-458 nm 

Blue 2 465-485 nm 
Green 550-570 nm 

Green 2 524-538 nm 
Red 663-673 nm 

Red 2 642-658 nm 
Red Edge 1 712-722 nm 
Red Edge 2 700-710 nm 
Red Edge 3 731-749 nm 

Near Infrared 820-860 nm 
 

UAS Image Processing 
For each of the four acquisitions, UAS images were processed in Agisoft Metashape 

version 1.6.4 (Agisoft LLC., St. Petersburg, Russia) using the Structure from Motion algorithm 
with Mild Depth Map Filtering and High-Quality generation parameters. These settings were 
used to maximize individual tree extraction accuracy based on the findings of Tinkham and 
Swayze (2021). Photos of the reflectance panels were used to calibrate image spectral 
reflectance and correct for lighting inconsistencies due to clouds and sun angle.  

The GCP locations were imported to Metashape and iteratively georeferenced using a 
minimum of 10 photos per GCP, resulting in a median (s.d.) root mean square error of 7.3 (5.2) 
cm, 5.8 (3.5) cm, and 0.8 (0.5) cm for X, Y, and Z locations, respectively across all sites and 
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collections. Once GCPs were georeferenced, UAS photos were aligned to produce approximately 
5-8 million tie points as well as an orthomosaic and dense point cloud with information for the 
10 spectral bands attached. The orthomosaics had a final pixel resolution of 6.3 cm. Before 
export, pixel and point values were converted from digital number to reflectance by dividing 
each band value by 32,768 following the recommendation of the camera manufacturer 
(MicaSense Seattle, WA, USA). Then, orthomosaics and point clouds were exported as GeoTiffs 
and LAS files, respectively, for each flight date in the North American Datum 1983 UTM Zone 13 
North (NAD83, UTM 13N) projected coordinate system. These data were then imported into R 
for analysis.   

To extract individual trees and tree crowns, point clouds and orthomosaics were 
processed in RStudio version 4.3.2 (R Core Team, 2022). Following the point cloud processing 
steps from Tinkham & Woolsey (2024), point clouds were processed using the cloud2trees 
package (Woolsey, 2024) which integrates the lasR (Roussel, 2024) and lidR packages (Roussel 
et al., 2020, Roussel & Auty, 2024). First, raw point clouds were denoised which involved 
classifying isolated points and dropping them, as well as duplicate points, from the point cloud. 
Then, we classified ground points and generated a digital terrain model (DTM) with 1.0 m 
resolution using Delaunay triangulation and pit fill. This allowed us to height normalize the 
point cloud and generate a canopy height model (CHM) at 0.10 m resolution. To locate 
individual trees, we used a variable window function [Equation 2] as proposed by Creasy et al. 
(2021) and the locate_trees function from the lidR package to identify all tree tops that were at 
least 2 meters tall. Then, we delineated tree crowns using the marker-controlled watershed 
function of the ForestTools package (Plowright, 2024). Finally, we spatially joined the tree tops 
with the tree crowns following the methods of Tinkham et al. (2022). The outputs of these steps 
included a CHM and DTM raster, individual tree crown polygons, and tree location points which 
included the calculated height.  

 
𝑉𝑉𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑉𝑉𝐹𝐹𝑀𝑀 𝑊𝑊𝐹𝐹𝐶𝐶𝑊𝑊𝐹𝐹𝑊𝑊 𝑅𝑅𝐹𝐹𝑊𝑊𝐹𝐹𝑀𝑀𝑀𝑀 = 0.3 + 𝐶𝐶𝐶𝐶𝑀𝑀 𝑉𝑉𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀 ∗ 0.1     [2] 

The tree location points were spatially matched to field-collected tree locations 
following the methods of Tinkham et al. (2022). This spatial matching process used a maximum 
search distance of 5 m and a maximum height error of 4 m to identify the nearest UAS trees to 
the field trees using the sf package (Pebesma, 2018). The UAS tree within the search distance 
with the smallest height error was then assigned to the field tree as a match. These matches 
were used with the st_intersects function from the sf package to extract the nearest individual 
tree crown polygon. Then, using the individual tree crown polygons and 10-band orthomosaics, 
we derived each pixel’s spectral values for each of the 10 bands within each crown polygon 
using the exact_extract function of the exactextractr package (Baston, 2024). These values were 
normalized to the reflectance scale by dividing each cell value for a given band by the global 
maximum of that respective band (Micasense). Then, using the normalized cell values we 
calculated NDVI2 (Equation 3), PRI (Equation 4), and FMCI (Equation 5), and extracted Red Edge 
3 values for all pixels. Raster values within each polygon were further summarized as the mean, 
median, 10th, 20th, 25th, 30th, 40th, 60th, 70th, 75th, 80th, and 90th percentile band and index values 
for each tree crown. The band and index values were appended to the field tree lists to be used 
as predictor variables in the multiple linear regression model developed by Lad et al. (2023). We 
also evaluated species, Julian date, and site as potential predictor variables.   

𝑁𝑁𝑁𝑁𝑉𝑉𝑁𝑁2 = 𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁𝑊𝑊𝑅𝑅2
𝑁𝑁𝑁𝑁𝑁𝑁+𝑁𝑁𝑊𝑊𝑅𝑅2

                      [3] 

𝑃𝑃𝑅𝑅𝑁𝑁 = 𝐺𝐺𝐷𝐷𝑊𝑊𝑊𝑊𝐺𝐺2−𝐺𝐺𝐷𝐷𝑊𝑊𝑊𝑊𝐺𝐺
𝐺𝐺𝐷𝐷𝑊𝑊𝑊𝑊𝐺𝐺2+𝐺𝐺𝐷𝐷𝑊𝑊𝑊𝑊𝐺𝐺

                 [4] 
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𝐹𝐹𝑀𝑀𝐶𝐶𝑁𝑁 = 𝑁𝑁𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅𝑊𝑊𝑊𝑊3−𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅𝑊𝑊𝑊𝑊3+𝑁𝑁𝑁𝑁𝑁𝑁

              [5] 

Modeling and Data Analysis 
After summarizing predictor variables, we tested the Multiple Linear Regression Model 

(MRLM; Equation 6) from Lad et al. (2023) which used NDVI2, PRI, FMCI, and the RedEdge3 band 
as predictor variables. This modeling approach applied the stats package in base R (R Core 
Team, 2023). We tested each summarization technique (i.e., mean, median, Xth percentile, etc.) 
on these four variables, fitting 12 to the summarized metrics, and compared their accuracy in 
predicting observed FMC using Pearson’s correlation, mean error (ME), and root mean square 
error (RMSE). Then, we performed a paired t-test to determine the difference between the mean 
observed FMC and the mean model-predicted FMC. Finally, we computed ranks for the observed 
and predicted values and tested their difference with Spearman’s rank correlation.  
 
𝐹𝐹𝑀𝑀𝐶𝐶% = −226.61 + 138.64 × 𝑁𝑁𝑁𝑁𝑉𝑉𝑁𝑁2 + 611.92 × 𝑅𝑅𝑀𝑀𝑊𝑊𝑅𝑅𝑊𝑊𝑅𝑅𝑀𝑀3 + 851.31 × 𝐹𝐹𝑀𝑀𝐶𝐶𝑁𝑁 + 1039.63 × 𝑃𝑃𝑅𝑅𝑁𝑁   [6] 
 

To identify potential differences between the lab model and the optimal prediction of 
FMC using field scale data, we also fit a series of multiple linear regression models using the 
UAS-derived tree-level spectral bands and indices, along with species and Julian date to predict 
FMC. We fit RandomForest models to each of the 12 sets of summarization metrics (e.g., 10th, 
20th, 30th percentile, etc.) to predict FMC using the RandomForest R package (Liaw & Wiener, 
2002). The models included the tree-level summary metrics for the ten spectral bands and nine 
spectral indices. These spectral indices included NDVI, NDVI2, PRI, FMCI, Normalized Difference 
Wetness Index (NDWI; Equation 7), Green Normalized Difference Vegetation Index (GNDVI; 
Equation 8), and Normalized Difference Red Edge (NDRE; Equation 9). The best summarization 
metric was identified as the model with the greatest variance explained (R2) by the 
RandomForest regression model. 
 

𝑁𝑁𝑁𝑁𝑊𝑊𝑁𝑁 = 𝐺𝐺𝐷𝐷𝑊𝑊𝑊𝑊𝐺𝐺−𝑁𝑁𝑁𝑁𝑁𝑁
𝐺𝐺𝐷𝐷𝑊𝑊𝑊𝑊𝐺𝐺+𝑁𝑁𝑁𝑁𝑁𝑁

                    [7] 

𝐺𝐺𝑁𝑁𝑁𝑁𝑉𝑉𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁−𝐺𝐺𝐷𝐷𝑊𝑊𝑊𝑊𝐺𝐺
𝑁𝑁𝑁𝑁𝑁𝑁+𝐺𝐺𝐷𝐷𝑊𝑊𝑊𝑊𝐺𝐺

                   [8] 

𝑁𝑁𝑁𝑁𝑅𝑅𝑅𝑅 = 𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅𝑊𝑊𝑊𝑊1
𝑁𝑁𝑁𝑁𝑁𝑁+𝑁𝑁𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅𝑊𝑊𝑊𝑊1

                 [9] 

For the set of spectral bands and indices identified as the best summarization approach 
using RandomForest, we tested variable correlation to remove any highly (i.e., >70%) collinear 
variables. The reduced non-collinear set of predictors was used to generate a final multiple 
linear regression model of FMC using the stats R package (R Core Team, 2023). The model was 
reduced using a forward-backward stepwise approach to minimize the Akaike Information 
Criterion (AIC) using the olsrr R package (Hebbali, 2020). Utilizing the reduced variable set, we 
estimated predictor coefficients and their 95% confidence intervals using bootstrapping with 
1,000 repetitions using the boot R package (Davison & Hinkley, 1997; Canty & Ripley, 2022), 
allowing us to check uncertainty and model consistency. To further analyze the best-fitting 
model, the predicted and observed values were ranked within the distribution, and the accuracy 
of placing trees into two categories was assessed. The intention of this was to mimic how a 
manager might target the 30% or 40% most drought-stressed trees. The average accuracy of 
splitting predictions into two bins was assessed if the method was used to identify the 10%, 
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20%, 30%, 40%, and 50% most drought-stressed trees.  

Results & Discussion 
Field-collected FMC was approximately normally distributed when examined across all 

sites and dates (Figure 2). The observed FMC values ranged from 73% to 126%, with an average 
of 98.4%. FMC across the four dates was bimodally distributed, but the range of FMC values 
tended to narrow through time. Additionally, the FMC values at EP tended to be higher when 
compared to RFL, and there were generally higher values for Douglas-fir than ponderosa pine 
(Figure 2). 
 Spectral reflectance of bands and indices were also compared across Julian dates to 
examine the importance of the collection date (Figure 3). Most spectral bands exhibited low 
variation between Julian dates, except for the first data collection which consistently had greater 
reflectance levels. Within a single collection date, bands in the red and red edge portion of the 
spectrum featured greater variability and wider interquartile ranges than bands with shorter 
wavelengths. The near-infrared indices (NDVI2 and FMCI) exhibited lower mean values for the 
RFL collections (first and last Julian date) compared to the EP collections, with there being much 
more consistency in the PRI values between dates, but less within site variation.  

 
Figure 2: Histograms of foliar moisture content values across the four collections at the Red Feather Lakes (RFL) and Estes 

Park (EP) sites separated into A) distribution by site, B) distribution by Julian date, and C) distribution by species. 

Comparing the 12 sets of MLRM predictions from Lad et al. (2023) against observed FMC 
values found that the mean reflectance achieved the highest Pearson’s correlation, while the 90th 
percentile achieved the lowest ME and RMSE (Table 3.3). A paired t-test of the observed and 
predicted values found no significant difference between means (p=0.57) using the 90th 
percentile technique, but the mean technique was significantly different (p<0.05). Across the 12 
summarized models, the correlation generally remained stable but using lower percentiles of 
within canopy values had higher correlation and there was a slight decline in correlation at 
higher percentiles. However, the ME and RMSE decrease with the use of higher percentiles, 
suggesting an increase in accuracy of the predicted values. Testing the ranking of the predicted 
FMC values from the mean and 90th percentile models against the observed rankings using 
Spearman’s rank correlation showed that both models similarly captured the gradient of FMC 
values (Spearman’s rank Correlation=45.06 and 44.07, respectively).  
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Figure 3: Boxplot of spectral band and index distribution within surveyed tree crowns colored by Julian date. 

Table 3: Accuracy of each summarization metric tested in applying the multiple linear regression model from Lad et al. 
(2023). 

Summarization 
Technique 

Pearson’s 
Correlation 

Mean 
Error 

Root Mean 
Square Error 

Mean 43.70 203.77 238.44 
Median 41.38 197.08 237.00 

10th Percentile 42.06 411.86 431.77 
20th Percentile 42.19 345.18 368.12 
25th Percentile 42.30 317.33 342.09 
30th Percentile 42.12 291.50 318.50 
40th Percentile 41.67 242.94 275.42 
60th Percentile 41.22 153.16 202.91 
70th Percentile 40.94 109.54 173.04 
75th Percentile 40.83 86.89 159.92 
80th Percentile 40.51 63.14 148.40 
90th Percentile 39.81 5.53 135.66 

 
The lack of high accuracy in the lab-developed MLRM could be the result of scaling and 

summarization mismatches. In the lab, pure individual sapling spectral values were collected 
using three plant probe samples across the crown, while in the field, tree spectral values were 
collected as pixels across the entire crown, with values primarily reflecting the top 2D profile of 
the crown. To account for the mixture of foliage, branch, and background substrate captured in 
the UAS pixels, we attempted to account for these collection approach differences by testing 
summarization techniques. However, the UAS imagery also contended with greater spectral 
variability in mature crowns as, even within extracted polygons, there are differences in crown 
shading/illumination. This all contributes to the relatively narrow spectral distribution of the 
laboratory saplings (Figure 4) compared to the UAS imagery (Figure 3). The young needles (i.e., 
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less than two years old) on the laboratory saplings likely reflect more light (Rock et al., 1994) 
compared to the older (i.e., up to five years old) needles assessed in the field. Comparing the lab 
spectral data from Lad et al. (2023) against this study’s UAS data shows a much lower and 
narrower range of near-infrared values from the lab data. The lack of variability in the training 
data for the lab MLRM likely contributed to a lack of model fit when predicting using field values 
that featured higher levels of variability, as well as higher reflectance values in general.   
 

 
Figure 4: Distribution of band spectral values collected during Lad et al. (2023) and applied in the lab multiple linear 
regression model. 

RandomForest identified that using the 80th percentile of tree-level summarized spectral 
bands and indices provided the most predictive power. In our testing of summarization 
approaches, species was a significant predictor of FMC in ten out of twelve of the RandomForest 
models, highlighting its utility. The final reduced multiple linear regression model developed on 
the field data retained species and the within crown 80th percentile values of NDVI2 and FMCI as 
predictors and resulted in an adjusted R2 of 31.02 (p<0.05) with a residual standard error of 
8.98% FMC (Figure 5). Predicted FMC increased as the index score increased for both NDVI2 and 
FMCI (Table 4). Additionally, species was significant with Douglas-fir increasing the intercept by 
4.2% FMC over ponderosa pine. 

 
Table 4: Final reduced multiple linear regression model output table. 

 Coefficient Confidence 
Interval  

Standard Error T value p-value 

Intercept 89.71 75.59, 100.74 4.38 20.50 <0.05 
Douglas-fir 4.20 1.15, 6.68 1.31 3.22 <0.05 
NDVI2_p80 23.67 10.75, 41.67 4.67 5.07 <0.05 
FMCI_p80 35.58 21.75, 55.62 8.72 4.43 <0.05 
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Figure 5: Observed and predicted foliar moisture content from a multiple linear regression model using Species and the 

80th percentile values of NDVI2 and FMCI as predictor variables. 

To test the utility of the model in thresholding the predictions to inform management 
decisions, we ranked the predicted and observed values and subset them into binary classes 
representing the lower 50% of FMC and higher 50% of FMC. This single split achieved an 
accuracy of 75.5% with bin standard errors of 2.9% each. Repeating this process to include splits 
identifying the 10%, 20%, 30%, 40%, and 50% most drought stressed trees resulted in an 
average accuracy of 81.40%, with accuracy declining from 89.8% for the 10/90 split to 75.5% for 
the 50/50 split. Similarly, the smaller bin identifying the more drought-stressed trees had an 
average class standard error of 2.2% that went from 1.3% to 2.9% as the bin increased from 10% 
to 50% of the predictions. The larger bin inversely declined from 3.8% to 2.9% as the bin 
decreased from 90% to 50%, with an average of 3.4%. Predicted bins were statistically significant 
(i.e., p<0.05) when identifying the 30%, 40%, and 50% most drought stressed trees, but not 
when the threshold was set to identify the 10% (p=0.56) or 20% (p=0.17) most drought stressed 
trees.  

When UAS derived values were applied to the prediction of FMC, the lab developed 
MLRM achieved relatively low prediction accuracy. The new multiple linear regression model fit 
to the UAS data predicted FMC values that were successfully classified using a threshold to 
identify trees with higher vs lower drought-stress with 81.4% accuracy. While exact predictions 
of FMC had a mean error of ~9%, it is likely more important to capture the gradient of drought-
stress as FMC is known to change rapidly in the field, with ponderosa pine previously shown to 
vary up to 34% diurnally in the summer with daily minima occurring in the morning and shortly 
after noon (Philpot, 1965). These temporal fluctuations likely mean that a prediction of FMC at a 
single time point does not necessarily represent the health of an individual tree. However, mid-
day acquisitions would facilitate capturing the lowest within-tree relative FMC, while reducing 
shadowing in imagery. Further, FMC for Douglas-fir and ponderosa pine is typically between 
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100% and 130% in the summer with old foliage having values commonly under 100% (Keyes, 
2006). However, our field observed average FMC across summer collection dates was 98%, with 
many trees below 90% FMC. The EP site had consistently higher FMC values, potentially resulting 
from this site being in a post-treatment condition, while the RFL site has high forest density and 
has not been treated or disturbed in the last 100 years. 

The 81.4% classification accuracy in identifying the most drought-stressed trees is 
slightly lower than previous studies attempting to classify tree health status using UAS 
multispectral imagery in orchards (healthy/unhealthy 97.52%; Jemaa et al, 2023), and in mixed 
broadleaf-conifer forests (live/dead/beetle infested 84.71%; Abdollahnejad & Panagiotidis, 
2020), but no studies have thus far identified relative health of western US mixed-conifer forests 
at the individual tree scale. As UAS sensor technology continues to advance and attempts to 
integrate hyperspectral, short-waver infrared, or thermal imagery, model accuracy of FMC and 
other health metrics should continue to improve. Using a hyperspectral camera, Näsi et al. 
(2018) classified bark beetle stress into health/infested/dead classes in an urban forest with 81% 
accuracy. Physiological indicators of tree health, such as stomatal conductance and leaf water 
potential, can also be captured using hyperspectral and thermal imagery with crown 
temperature showing a strong correlation with stomatal conductance (Zarco-Tejada et al., 2012). 
UAS show strong potential for the early detection of tree moisture stress and models should 
consider ecosystem-specific physiology, such as species composition and morphology, and 
abiotic factors such as topography and hydrology (Ewane et al., 2023). The wide range of 
applications of UAS imagery for vegetation health assessment is critical for the maintenance and 
restoration of forest resilience and should continue to be explored in the context of 
disturbances and global change ecology. Future research aiming to apply UAS imagery for tree 
health assessments should consider sensor cost, sensor spectral and spatial resolution, and site 
variability of biotic and abiotic factors when choosing the UAS that will be flown.  

Implications for Management 
Forest FMC is an important indicator of forest resilience and the relative distribution of 

FMC within a site can highlight areas for targeted management actions. Our models of site-
specific relative FMC could be applied to forest sites and provide managers with relative tree 
stress to inform targeted thinning and prescribed fire operations, resulting in subsequent 
increases in growth and resilience against drought. Specifically, our models can produce maps 
of the 20% most stressed or healthy trees on a site. These maps could be combined with tree 
size and spatial arrangement maps and be used to inform managers of areas to target to 
increase the vertical and horizontal complexity of their forests, while prioritizing the retention of 
the site’s most resilient individuals (Churchill et al., 2013). Additionally, these models could be 
used to evaluate sites post-thinning to examine changes to moisture content of the remaining 
trees (North et al., 2009). By connecting our model of tree-level FMC with ecologically-informed 
management, we can increase the information available for adaptive management that balance 
forest resilience and fire risk reduction. 

In fire-dependent forests, the application of our models could guide ignition strategies, 
allowing managers to adjust ignition line distance to control fireline intensity based on burn-
specific mortality objectives. By providing managers with near-real-time access to overstory fuel 
conditions, we can expand the information available to managers while they make fire planning 
decisions. Further, in areas with an increasing occurrence of short-interval fires, these models 
could be applied to assess the resilience of surviving trees after initial fires and inform thinning 
and refugia management to increase resistance to subsequent disturbances.  

There is strong potential to operationalize these models and inform site-specific 
management decisions. These models could be integrated into management workflows either in 
the planning or evaluation stages. To integrate these models into planning, UAS data could be 
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collected on a site prior to treatment. This data could be processed into individual tree spectral 
values to be input into relative FMC models. In combination with tree size and distribution 
maps, relative FMC models of the overstory trees could identify target trees for retention (i.e., 
the 50% highest FMC trees) to maintain site resilience. Then, managers could compare potential 
treatment maps that combine tree spatial distribution and site health models to make informed 
decisions for thinning operations. Finally, UAS data could be collected post-treatment to 
examine changes to relative site FMC and examine management-induced improvements to 
individual tree FMC.  

Future Research 
 Future research will focus on operationalizing our model to provide managers with site-
specific maps of relative tree stress. To adapt our model for application, species classification 
models will be integrated into the workflow. Additionally, individual trees were not consistent in 
their rank through collection dates, highlighting a need to examine seasonality of FMC and the 
importance of collection timing to ensure FMC rankings reflect relative health accurately. Further 
testing of these models on intermediate size trees, and those shaded out by the overstory, is 
needed as these intermediate trees are likely the target of management actions aiming to 
reduce forest density and fuel connectivity. Finally, model validation will continue at additional 
forest sites in Northern Colorado to examine model transferability.  

Conclusions 
 Our analysis identified the most stressed trees at two sites in northern Colorado with 
~80% accuracy, representing a significant advancement in the tools available for adaptive 
management in a semi-arid environment. As aridity is expected to increase in the coming years, 
this model provides valuable insights to guide targeted treatments aimed at enhancing forest 
resilience to future disturbances. Managers could integrate this model with site-specific 
knowledge and maps of tree composition and distribution to make fully informed decisions. By 
identifying areas with historically persistent openings, managers can pinpoint locations where 
infilling trees are likely drought-stressed due to soil moisture and nutrient limitations (Bond & 
Keeley, 2005). This would allow managers to prioritize areas for intervention and restoration 
while accounting for both overstory relative FMC, as well as underlying soil conditions. The 
operationalization of these models would allow for the production of site-specific maps of FMC 
distribution, allowing managers to target specific trees for either removal, for fire risk reduction, 
or retention, to build site resilience. Future work should evaluate the accuracy of this model for 
predicting relative FMC of additional species and in different elevation zones both within 
Colorado, and across the western United States.    
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Appendix C: Metadata 
 
The metadata for this project describe the collected tree foliar moisture contents (FMC) from the 
field sites. Tree FMC was collected between 1100 and 1300 at two sites across four dates using 
multiple needle samples from each tree. The metadata also describe the UAS image collection 
process which took place as close to 1200 as weather conditions allowed.  
 
The raw data and metadata will be uploaded to the US Forest Service Research Data Archive 
(USFS-RDA) following journal publication. Pre-processed data from this project will also be 
made available upon request.  
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