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Abstract 
This project quantifies the effects of fuel treatments and previously burned areas on daily fire 
management costs, as well as summarizes recent encounter rates between fuel treatments and 
wildland fires across the conterminous United States. Using national-scale, spatially explicit data 
on recent fuel treatments and wildland fires, we quantified the frequency, extent, and geographic 
variation of encounters between fuel treatments and wildland fires on federal lands. These data 
were used to identify fires that burned into previous fuel treatments or burned areas. Panel 
regression analysis estimates daily fire management costs for 56 such fires between 2008 and 
2012 as a function of a suite of spatial variables that characterized the fire environment (e.g., 
weather, topography, and human populations-at-risk). Results from the regression analysis 
suggest that days when a fire encounters a fuel treatment or burned area are, on average, 
positively associated with fire management costs, likely revealing the use of previously treated 
and burned areas to facilitate suppression operations. These effects, however, are not uniform 
across regions and landscape contexts.  
 
Contrary to our findings, the proposal for this project hypothesized that encounters with fuel 
treatments and previous burns would reduce fire management costs. As such, our initial 
objectives were predicated on that expectation. The study objectives were to determine the 
specific sources of these reductions in costs as well as estimating the tradeoffs between fuel 
treatment costs and suppression costs. The objectives were only partially met because our data 
request to the USFS National Incident Management Organization’s I-Suite application was only 
partially fulfilled and because of the contrary findings of increased fire management costs as 
fires enter fuel treatments and previous burns. To overcome the obstacle of inaccessible fire cost 
data, we explored expanding our cost dataset with model-predicted cost using a data matching 
exercise between I-Suite costs and ROSS resource use categories. While there may be some 
merit to that exercise, given our limited set of I-Suite data we deemed it to be a tenuous source 
for expanding the data. 
 
This study focused on evaluating daily costs, rather than total fire costs. Unexpectedly, we found 
that encounters with fuel treatments and previous fires increase daily fire management costs. 
Managers working in the field validated the concept suggesting that fuel treatments and previous 
fires are often areas where suppression efforts are applied in greater force. Future research could 
determine if these suppression efforts are successful at stopping fires and reducing total fire 
costs. 
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Objectives 
This project proposed to quantify the effects of hazardous fuels treatments on suppression costs 
of subsequent wildfires in response to the following JFSP task statement: “Fuels Treatment 
Effectiveness: Landscape-level and Programmatic Economics” addressing the following 
question: “Avoided wildfire costs and the costs of wildfire consequences - How do the costs of 
implementing various wildland fire suppression strategies compare to fuel treatment costs? Are 
treatment costs justified by avoidance of resource impacts, or avoidance of other harm to 
communities and human populations?” 
 
In our project, econometric models of daily fire suppression costs are estimated to determine if 
and to what extent hazardous fuels treatments and previous wildfires reduced observed wildfire 
suppression costs for a sample of 56 recent fires that have interacted with previously treated and 
burned areas. We investigate how other biophysical and environmental factors influence 
suppression costs and leverage existing datasets on the location, type and intensity of previously 
treated areas with observed wildfire suppression costs, and use a combination of geospatial 
analysis and econometric modeling techniques to better understand how hazardous fuels 
treatments affect wildfire suppression costs.  
 
The specific objectives outlined in the proposal for this project were to: 

1. Quantify fuel treatment and wildfire effects on suppression costs in terms of fuel 
treatment type, age, size, and intensity; 

2. Quantify the spatial spillovers and temporal longevity of fuel treatment and wildfire 
effects on suppression costs of subsequent fires; and 

3. Estimate the tradeoffs between fuel treatment costs and suppression costs. 
 
We hypothesized that fuel treatments and previous wildland fires reduce the cost of managing 
subsequent fires when fires spread into treated or previously burned areas. The longevity of the 
expected reductions in suppression costs were hypothesized to vary according to fuel treatment 
type, time since treatment, size, and intensity. The effects of fuel treatments and previously 
burned areas on suppression costs were expected to exhibit a positive spatial spillover, and the 
tradeoffs between the cost of fuel treatment implementation and reductions in future fire 
suppression costs were predicted to vary according to treatment and ecosystem types.  
 
Objective 1 was successfully achieved by constructing empirical models of daily wildland fire 
management costs that included information describing the distribution of fuel treatments and 
previously burned areas  in different levels of detail. We attempted to identify unique effects of 
different fuel treatment types, ages, sizes, and intensities, but were constrained by the availability  
of fire management cost data. Rather, we estimated suppression cost effects of a fire entering 
fuel treatments (collectively) or a previous wildfire. While the limited sample of fires prevented 
us from estimating separate effects by fuel treatment type, age, size and intensity, we were able 
to identify different effects by region (east vs. west) and landscape context (defined by areas with 
low population and low density of fuel treatments). 
 
Objectives 2 and 3 were predicated on an expected negative relationship between fuel treatments 
and previously burned areas on fire management costs. Our findings from Objective 1 were 
somewhat counterintuitive, suggesting a positive association between daily fire management 
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costs and encounters with fuel treatments and previously burned areas, though these effects vary 
somewhat across geography and landscape contexts. These findings were further validated 
through workshop interactions with fire managers who indicated that treatments and previously 
burned areas can serve as safe and effective platforms for suppression activities. Given the 
positive association between daily fire management costs and encounters with fuel treatments 
and previously burned areas, addressing the temporal longevity of treatments from an avoided 
suppression cost perspective and the tradeoffs between fuel treatment costs and avoided 
suppression costs in Objectives 2 and 3 became effectively moot.   
 
We achieved an additional objective by quantifying encounter rates of recent wildland fires with 
fuel treatments across the CONUS. Encounter rates were calculated and mapped for 67 
ecosystems. We also summarized encounter rates for treatment units by treatment unit size, 
number of treatments, and by age of treatment. These findings were published in Barnett et al. 
(2016) and are summarized in this final report. 
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Background 
Federal wildland fire management costs continue to increase, limiting land management 
agencies’ ability to attain further land and resource management objectives (Thompson et al. 
2015). The US Forest Service (‘Forest Service’) spent over 50% of its discretionary funding on 
wildland fire suppression alone in fiscal year 2015 (USFS 2015), a notable increase from an 
average of 20% before 2000 (USFS 2009). The Forest Service invests substantial resources into 
removing hazardous fuels to improve forest health and mitigate fire hazard. Fuel treatments are 
assumed to reduce wildfire management costs by decreasing the risks of uncharacteristic 
wildland fire and facilitating the restoration of active fire regimes. Little empirical justification 
exists to support this policy. 
 
Fuel treatments are a standard land management tool to mitigate negative wildland fire effects on 
forested lands. The objectives of fuel treatments vary across a landscape, but in general are 
intended to reduce fire spread rates and the probability of extreme fire behavior (Agee and 
Skinner 2005). In doing so, fuel treatments are expected to create both short and long-term 
pathways to achieve reductions in fire management costs. The likelihood of extinguishing 
unplanned ignitions during the initial phases of fire suppression, or ‘initial attack’, increases as 
potential fire spread rates decrease, and arguably the most effective, albeit short-term, strategy to 
reduce fire suppression costs may be through safe and effective initial-attack (Gebert and Black 
2012). However, long-term reductions in fire management costs may be achieved by strategically 
locating fuel treatments across a landscape such that wildland fires will not harm important 
ecological functions (Ager et al. 2013). In doing so, the decision-space over future unplanned 
ignitions may expand and increase opportunities to employ less aggressive response strategies 
that require fewer suppression resources (Reinhardt et al. 2008). 
 
Regulatory, funding, and operational constraints to fuel treatment implementation, especially 
large treatment units that have the greatest impacts on potential fire spread and behavior (Collins 
et al. 2010), challenge the Forest Service’s ability to reduce fuel loadings on the millions of 
forested hectares that are in need of restoration. Despite annual investments of over $300 million 
in the hazardous fuels treatment program since 2007 (USFS 2016), recent research suggests that 
the pace and scale of forest restoration treatments is insufficient to achieve landscape-scale 
management objectives on Forest Service lands (North et al. 2015). Many fire-prone landscapes 
remain in a ‘disturbance deficit’ (Parks et al. 2015b), with only about half of the historic annual 
area burned being treated or burned by characteristic wildfire in a given year on lands managed 
by the Forest Service (Vaillant and Reinhardt 2017). Breaking the suppression-risk cycle (Arno 
and Brown 1991) requires a concerted effort to manage fire for its ecological benefits by 
choosing to not suppress unplanned ignitions when low-risk opportunities present themselves 
(Calkin et al. 2015). Although fuel treatments are viewed as a catalyst for this change (Agee and 
Skinner 2005), the low probability of a treated area being burned by a subsequent fire during a 
treatment’s lifespan raises questions over the efficacy of treatments to alter regional fire patterns 
(Barnett et al. 2016, Schoennagel et al. 2017).  
 
Recognizing that fuel treatments alone have a limited ability to achieve forest management 
objectives, federal fire management policy and strategy encourages the use of unplanned, 
naturally ignited fires to advance the pace of landscape-scale forest restoration (USDA and USDI 
2011). Previously burned areas can serve as natural fuel treatments by moderating the spread, 
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severity, and occurrence of subsequent fires (Collins et al. 2007, Parks et al. 2014, Parks et al. 
2015a, Parks et al. 2016). Fires not only reduce and rearrange fuel loadings over a much larger 
spatial extent than mechanical fuel treatments (USFS 2003), but the heterogeneity in 
successional pathways created by fire’s natural variability remains an integral function of 
resilient forested ecosystems (Hessburg et al. 2015). From a fire manager’s perspective, 
previously burned areas can serve as important fire control locations (Thompson et al. 2016). A 
higher probability of natural fire cessation tends to occur in fuel-limited areas (Holsinger et al. 
2016), especially during periods of moderate fire weather (Parks et al. 2015a). 
 
What remains unclear is whether and how fuel treatments and previously burned areas affect 
suppression resource use and associated costs. Three studies have examined the potential effects 
of fuel treatments on subsequent fire suppression costs (Thompson and Anderson 2015). There 
are two main threads that tie this limited body of research together: 1) each employs simulation 
modeling techniques to examine potential impacts of fuel treatments between observed and 
hypothetical landscape scenarios; and 2) consideration of changes in suppression resource use 
throughout the duration of a fire as a result of fuel treatment encounters is neglected. How fire 
managers respond to heterogeneous landscape conditions, including changes in fuel conditions as 
a result of fuel treatments and previously burned areas, can help policy makers gauge whether 
investments in hazardous fuels reduction programs are effectively changing the fire management 
decision-space.  
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Data and Methods 
The main objective of this study was to evaluate the effect of fuel treatments and previous fires 
on daily fire suppression costs. Obtaining daily fire suppression cost data from the USFS 
National Incident Management Organization’s I-Suite application is a time consuming endeavor. 
To facilitate the process, we narrowed our data request to the 361 fires between 2002-2013 (with 
158 fires between 2008-2012) that entered a fuel treatment or previous fire and that employed 
Type 1 or Type 2 incident teams during at least a part of the fire suppression efforts. At least 91 
of those fires between 2008-2013 were located within the I-Suite application and daily cost data 
were provided for 65 of the requested fires. I-Suite cost data for 63 fires were successfully 
mapped to ROSS resource use data for the matching exercise described below. For the purpose 
of suppression cost regression analysis the number of fires were reduced to 56 fires and 985 fire-
days because the sample fires burned for very short durations (i.e., less than five days), the I-
Suite data contained erroneous values, or subsequent evaluation revealed that the fire was 
predominantly managed by an agency other than the USFS.  
 
Extensive GIS work preceded the creation of the data request for daily fire suppression costs. 
Federal lands1 (Figure 1) within 2.5 kilometers from the WUI2 (Figure 2) were identified and for 
those lands fuel treatments and fire polygons were obtained from LANDFIRE and MTBS. These 
polygons were then analyzed to determine the set of fires that intersected a prior fuel treatment or 
a previous fire. This set of fires were checked in the ICS-209 system to determine which fires 
employed Type 1 or Type 2 incident management teams to increase the chances that the fire data 
is contained within the I-Suite application. 
 

                                                
1 Federal lands layer obtained from the Protected Areas Database (Version 1.3, USGS Gap 
Analysis Program, available at https://gapanalysis.usgs.gov). 
2 WUI based on the ‘interface’ and ‘intermix’ spatial layers from the SILVIS lab (Radeloff et al. 
2005). 
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Figure 1 Map of federal lands across the CONUS. 

 
Source: Barnett et al. (2016) Figure 1. 
 
Figure 2 Distribution of WUI lands including 2.5 km buffer (gray) among regions and 
ecoregions of the CONUS.  

 
Source: Barnett et al. (2016) Figure 2. 3 
 

                                                
3 Ecoregions layer from The Nature Conservancy at http://maps.tnc.org/gis_data.html. 
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While our suppression cost data request was being processed, these initial data were used to 
characterize the interactions between fire and treatments in the US and published in Barnett et al. 
(2016). Corresponding methods and results are summarized below. At the same time, our USFS 
collaborator Sean Parks produced day-of-burning maps following Parks’ (2014) method. 
 
After our I-Suite data request had reached its limit, spatially explicit independent variables were 
derived from a variety of data sources using the day-of-burning maps. Variable descriptions and 
data sources for the suppression cost analysis are provided in Table 1. The day-of-burning maps 
were used to delineate daily burned area as well as daily cumulative footprint of the fire. For 
most variables, spatial data characterizes the fire environment within the cumulative footprint to 
allow the use of all daily cost data rather than just those days when the fire spread. However, for 
fuel treatment (RX) and previous fire (FIRE) variables, the data evaluated fire spread days only. 
Defining the treatment variables in such a manner allows our regression analysis to identify the 
average suppression cost effects of a fire entering a fuel treatment or a previous fire, while 
holding other variables constant. 
 
Table 1 Variable descriptions and data sources for the suppression cost regression analysis. 

Variable Description Source 
COST Total daily fire management cost I-Suite 
IMT_UC 1 if a fire was managed under ‘Unified Command’, 0 

otherwise 
ICS-209 

IMT_1 1 if a fire was managed by a Type 1 IMT, 0 otherwise ICS-209 
IMT_2 1 if a fire was managed by a Type 2 IMT, 0 otherwise ICS-209 
IMT_3 1 if a fire was managed by a Type 3 IMT, 0 otherwise ICS-209 
IMT_4 1 if a fire was managed by a Type 4 IMT, 0 otherwise ICS-209 
IMT_LOCAL 1 if a fire was managed by a local unit, 0 otherwise ICS-209 
POP 1 if a fire intersected a populated area, 0 otherwise LandScan 
REMOTE Index characterizing the relative amount of wilderness 

areas within a 20km window 
Derived 

TOPO Standard deviation of the difference between cell and 
neighborhood elevation  

Derived 

FUEL Index of vegetation productivity Landsat imagery 
ERC Available energy per unit area within the flaming front US Forest Service 
RX 1 if a fire intersected a previously treated area, 0 otherwise LANDFIRE 
FIRE 1 if a fire intersected a previous wildland fire, 0 otherwise MTBS 
EAST 1 if fire is located in eastern US ecoregions, 0 otherwise TNC 
LOWPOP 1 if less than 500 people are within 5km of the final fire 

perimeter, 0 otherwise 
LandScan 

LOWRX 1 if less than 3,000 ha of previously treated or burned areas 
are within 10km of the final fire perimeter, 0 otherwise 

MTBS & 
LANDFIRE 
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Methods for the Encounter Rates Analysis  
For the lands described above (Figure 2), using spatial data for fuel treatments between 1999 and 
2012 and for fires between 2000 and 2013, encounter rates were calculated as the percentage of 
treatment unit polygons that were intersected by wildland fires and summarized across 
ecoregions. This calculation involved two steps. First, for the treatment units encountered by a 
subsequent fire, we determined the number of years since the most recent fuel treatment. In this 
step, the earliest fire date was used for treatment units that encountered more than one fire. The 
second step involved normalizing the number of treatments within each time-since-treatment 
interval to remove potential bias introduced by truncated fire record. This normalization ensures 
that only treatments implemented in 1999 are included in analyzing encounter rates for 
treatments 14 years old (since the last fire year is 2013), only treatments from 1999 and 2000 are 
included in analyzing encounter rates for treatments 13 years old, etc. 
 
Area burned, treated area, treated area burned and encounter rates were summarized by 67 
ecoregions. Number of treatments, area treated, treated area burned and encounter rates were also 
summarized by treatment unit size class and number of times treated. Finally, we provide 
encounter rates by treatment age (time-since-treatment) containing information about number of 
treatments in each age-class. 
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Methods for the Suppression Cost Regression Analysis  
The panel model estimated the logarithm of daily management costs ln(COST) for fire i on day t 
is modeled as: 

ln !"#$!" =  !! + !!!"#!" + !!!!" + !!!!" + !!"  
!!" = !! + !!" 

where !! is the intercept, !!, !!, and !! are vectors of other model coefficients to be estimated. 
!"#!" is a set of dummy variables representing the type of incident management team, !!" is a set 
of biophysical variables, !!" is a set of fuel treatment and previous fire variables (collectively 
called “treatment variables”), and !!" is a composite error term that includes both an unobserved 
effect for fire i that is time-invariant (!!) and an idiosyncratic error component (!!"). Cluster 
robust standard errors are used to account for heteroscedasticity and spatial and serial correlation 
at the fire level. The dependent and all independent variables are described in Table 1. COST and 
treatment variables are summarized below in Table 2.  
 
Table 2 Summary statistics for the cost and treatment variables. 

Variable Mean Std. Dev. Min. Max. 
COST 570,905 774,500 188 6,453,287 
RX 0.12  0 1 
RX *LOWPOP 0.09  0 1 
RX *LOWRX 0.01  0 1 
RX*EAST 0.02  0 1 
FIRE 0.17  0 1 
FIRE*LOWPOP 0.13  0 1 
FIRE*LOWRX 0.01  0 1 
FIRE*EAST 0.02  0 1 
 
The analysis considered both the random effects model, where !! is assumed to be uncorrelated 
with independent variables, and the fixed effects model, without such an assumption. To choose 
the statistically preferred model between these two, Sargan-Hansen chi-square test is used 
because it allows for clustered standard errors in panel models while the Hausman test does not. 
These statistical tests suggest that the fixed effects model is more appropriate and, thus, the 
results focus on the fixed effects model. 
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Methods for the I-Suite to ROSS Data Matching Exercise 
An exercise matching the I-Suite cost data to Resource Order and Status System (ROSS) 
resource use data was primarily completed in an effort to explore whether ROSS-predicted costs 
could supplement the limited cost data obtained from I-Suite. ROSS is a comprehensive database 
that tracks tactical, logistical and support resources mobilized to wildland fire incidents in the US 
(Katuwal et al. 2017). ROSS data for this exercise were pre-processed by and acquired from 
research colleagues at the Rocky Mountain Research Station. ROSS database contains a much 
larger sample of fires than the I-Suite application. The resource use for each fire-day could, in 
theory at least, be transferred into a modeled cost metric for each fire-day. A secondary reason 
for completing this exercise was to validate that the I-Suite cost data corresponds closely to 
resources used in each fire-day. 
 
Given information on the mobilization and demobilization date of individual resource orders, 
suppression resources used to manage a given incident can be assigned to unique days during a 
fire’s progression (Hand et al. 2017). Depending on the predictive capabilities of the ROSS data, 
it may be possible to use the model to predict daily fire management costs for a larger sample of 
fires and enable a more robust analysis of the effects of fuel treatment and previously burned 
areas on fire management costs. 
 
I-Suite daily cost data were matched to daily suppression resource orders from ROSS. The final 
ROSS variables represent the daily count of unique suppression resources by category assigned 
to manage an individual incident. Table 3 provides information about the I-Suite to ROSS 
matched fire-days by state for 2008-2012. 
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Table 3 Matched fire-days data by state for 2008-2012. 

State Fires Days 
Total Cost 
($1,000s) 

Cost/Fire 
($1,000s) 

Cost/Day 
($1,000s) 

AZ 3 22  3,779.09   1,259.70   171.78  
CA 11 257  275,030.53   27,503.05   1,070.16  
CO 2 34  48,837.38   24,418.69   1,436.39  
ID 3 21  6,741.78   2,247.26   321.04  
MN 2 73  24,022.07   12,011.04   329.07  
MT 7 105  26,965.00   3,852.14   256.81  
NC 1 46  12,110.35   12,110.35   263.27  
NM 1 14  4,226.94   4,226.94   301.92  
NV 7 75  18,433.35   2,633.34   245.78  
OK 1 6  585.60   585.60   97.60  
OR 8 160  75,254.91   9,406.86   470.34  
SD 1 4  539.89   539.89   134.97  
TX 1 4  1,749.09   1,749.09   437.27  
UT 6 129  35,524.01   5,920.67   275.38  
VA 2 98  19,348.52   9,674.26   197.43  
WA 3 31  11,247.33   3,749.11   362.82  
WY 4 50  20,926.43   5,231.61   418.53  

      Total 63 1129  585,322.3  127,119.6 
 State average  3.71 66.41  34,430.72   7,477.62   399.63  

 
Pooled ordinary least squares estimated the I-Suite costs as a function of 54 ROSS categories for 
63 fires and 1,127 fire-days and explained 96.4% of variation in I-Suite costs. The high 
explanatory power of this simple model corroborates that the ROSS resource use data and I-Suite 
data generally move together. Based on the estimated regression (available upon request), the 
predicted daily wildland fire management costs were then computed and plotted against the 
observed values (Figure 3).  
 
Fitted lines between the predicted and observed values can be compared against 1:1 to gauge 
overall prediction accuracy across individual fires. There exists variability in the predicted versus 
observed values as estimated from the pooled ordinary least squares regression across the sample 
fires. Fitted lines in red (gray in black and white printout) for several fires exhibited a strong 
divergence from the black line with 1:1 correspondence, suggesting a poor model performance. 
However, predicted values were in close agreement for many fires and for 36 of the 63 fires the 
correlation (r) between observed and predicted values was 0.9 or higher. 
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Figure 3 Observed vs. predicted daily fire management costs, by fire. 
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Figure 4, cont. Observed vs. predicted daily fire management costs, by fire. 
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Table 4 The count and proportion of sample days in which the predicted values from ROSS 
are within various absolute margins of error. 

Absolute margin 
of error (%) 

No. of sample days 
(% of total) 

5 177 (15.7) 
10 348 (30.9) 
20 587 (52.1) 
30 712 (63.2) 
40 790 (70.1) 
50 836 (74.2) 

 
The predicted values were also summarized in terms of absolute margin of error (Table 4). 
Roughly three-quarters of the sample days exhibited predicted costs within 50% of the observed 
costs, but dropped to only 15.7% within five percent of the observed value. 
 
As a final part of the matching exercise, we use the ROSS-category predicted cost values in our 
suppression cost regression discussed in more detail above. The main estimation model is the 
same as above, with the replacement of the dependent variable with the ROSS-predicted costs: 
 

ln !"!!_!"#$%&'#$_!"#$!" =  !! + !!!"#!" + !!!!" + !!!!" + !!"  
!!" = !! + !!" 

 
The results of that analysis are provided in the next section. These results should be viewed with 
caution since the dependent variable contains modeled values rather than real world observed 
values for costs. 
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Results and Discussion 

Results from the Encounter Rates Analysis 
The likelihood of fuel treatments being encountered by a subsequent wildland fire is relatively 
low but varies across ecoregions of the CONUS. One principal critique of fuel treatments is that 
their benefits are rarely realized because of the low likelihood that an unplanned fire will 
encounter a previously treated area during its effective lifespan, though the rate and extent to 
which this occurs has remained largely unknown. We summarized encounters between recently 
completed fuel treatments on federal lands and subsequent wildland fires in terms of frequency, 
areal extent, and geography across ecoregions of the CONUS (Barnett et al. 2016). Across all 
ecoregions, 6.7% of fuel treatments implemented between 1999 and 2012 on federal lands were 
encountered by a subsequent fire by 2013. This rate, however, varied by ecoregion, with the 
highest encounter rates observed in the Southern California, Snake River Plain, and Mogollon 
Rim ecoregions (Figure 4, panel (d)).     
 
Figure 4 Distribution of (a) area burned, (b) treated area, (c) treated area burned, and (d) 
the encounter rates for each of the 67 ecoregions across the CONUS. 

 
Source: Barnett et al. (2016) Figure 3. 
 
 
Encounter rates are particularly large for treatment units 200 ha or greater (Table 5) even though 
only 1.4 percent of treatment units are that large. Also, while treatment units that have been 
treated just once make up the vast majority of treatments (in number and area), those also have 
the smallest encounter rates (Table 6). Treatment units that were treated three or more times 
between 1999 and 2012 had the largest encounter rates. This seems to indicate the land 
managers’ success in strategically repeating treatments in areas where wildland fires are likely. 
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Table 5 Number of treatments, area treated, treated area burned and encounter rate by 
treatment unit size class. 

Treatment unit 
size class (ha) 

Number of 
treatments 

Area treated 
(ha) 

Treated area 
burned (ha) 

Encounter rate 
(%) 

0-5 74,966 99,547 6,331 6.8 
5-10 21,809 158,899 9,718 6.5 
10-25 24,156 374,289 21,107 6.2 
25-50 8,125 281,081 15,543 6.8 
50-100 3,755 259,466 13,981 7.2 
100-200 1,753 244,308 11,783 8.1 
200-500 1,122 352,008 23,844 10.9 
500-1,000 503 352,731 23,907 15.5 
1,000-5,000 276 498,034 61,382 21.4 
> 5,000 18 184,486 28,690 50.0 
Source: Barnett et al. (2016) Table 3. 
 
 
Table 6 Number of treatments, area treated, treated area burned and encounter rate by 
number of times treated. 

Number of 
times treated 

Number of 
treatments 

Area treated 
(ha) 

Treated area 
burned (ha) 

Encounter rate 
(%) 

1 85,337 2,178,223 152,405 5.2 
2 32,955 461,365 42,889 7.9 
3 12,143 126,897 17,985 11.3 
4 3,992 25,021 2,206 13.3 
≥ 5 2,056 13,344 802 15.7 
Source: Barnett et al. (2016) Table 4. 
 
 
Encounter rates tended to decrease with the age of the treatment (Figure 5). Fires most frequently 
encountered treatments within one year from treatment and nearly half of those encounters were 
with treatment units that had received two or more treatments during study period (1999-2012). 
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Figure 5 Encounter rate as a function of time since most recent treatment. 

 
Note: Number of treatments represents the number of times an area was treated before being 
encountered by a subsequent fire. 
Source: Barnett et al. (2016) Figure 4. 
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Results from the Suppression Cost Regression Analysis  
Our manuscript, currently under review, provides the full regression results and discussion. Here 
we focus on the main variables of interest measuring the effects of a fire entering a fuel treatment 
or previous fire in different landscape contexts (low-population or low-treatment) or regions 
(east vs. west). For this discussion, collectively we call these variables “treatment variables” and 
report their coefficients in Table 7. Since these treatment variables are all dummy variables, their 
interpretation requires a transformation of 100 ∙ exp β − 1  because of the logarithmic form of 
the dependent variable (Wooldridge 2009). 
 
Encounters of wildland fires with previous fuel treatments are positively associated with daily 
fire management costs, at least in the western US comprising the majority of the sample fires. 
Days when the sample fires burned into a previous fuel treatment are associated with a 53.6% 
increase in daily management costs, or $306,005 when evaluated at the mean of daily 
management costs. The coefficient on the interaction variable RX*EAST is negative and 
statistically significant at p ≤ 0.01. Relative to days when a fire did not encounter a previous fuel 
treatment, daily management costs are associated with a 40.7% decrease in management costs on 
days when a fire encountered a previous fuel treatment in the eastern US. It is possible that fires 
located in the eastern US received a more passive management response when fires encountered 
treated areas in an effort to achieve land management objectives. 
 
Encounters of wildland fires with previously burned areas is positively associated with daily fire 
management costs, but the size of this effect is dependent on landscape context. Days when the 
sample fires burned into previously burned areas are associated with a 62.6% increase in daily 
management costs, or $353,387 when evaluated at the mean of daily suppression costs. In low-
populated area this effect is much smaller (7.4%) but still positive. This result validates the idea 
that higher cost suppression resources are reserved for incidents that are within closer proximity 
to populated areas. 
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Table 7. Suppression cost regression results for treatment variables only. 

 (1) (2) 
Variables Ln(COST) Ln(COST) 
RX 0.254** 0.429* 
 (0.099) (0.232) 
RX*LOWPOP  0.084 
  (0.306) 
RX*LOWRX  -0.258 
  (0.416) 
RX*EAST  -0.951** 
  (0.417) 
FIRE 0.108 0.486*** 
 (0.118) (0.159) 
FIRE*LOWPOP  -0.415** 
  (0.193) 
FIRE*LOWRX  -0.522 
  (0.325) 
FIRE*EAST  -0.244 
  (0.149) 
   
Observations 985 985 
R-squared 0.652 0.663 
Number of fires 56 56 
Other coefficients removed for brevity (available upon request). 
Cluster robust standard errors (clustered by fire) in parentheses. 
*** p<0.01, ** p<0.05, * p<0.1 
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Results from the I-Suite to ROSS Data Matching Exercise 
The primary reason for the I-Suite to ROSS data matching exercise was to evaluate whether 
ROSS data can be used to accurately predict daily wildland fire management costs. While the 
overall model fit for the pooled ordinary least squares regression finds that ROSS category items 
explain a large percent of variation in I-Suite daily cost data, within individual fires prediction 
quality was variable as seen on Figure 3 and discussed above. In this section coefficient 
estimates from suppression cost regression analysis using I-Suite cost data are compared to the 
corresponding analysis using ROSS-predicted cost data as the dependent variable (Table 8). The 
samples for these regressions are restricted to the matched observations only with 101 fire-days’ 
observations for 3 fires lost due to no match with ROSS data. 
 
The estimated coefficients of the IMT variables exhibited similar signs but different magnitudes 
and statistical significance between the two models, while the sign and significance of the 
estimated coefficients for variables representing the biophysical environment had higher 
agreement. The lone exception for this group is the estimated coefficient for available energy per 
unit area (ERC), which was statistically insignificant in the ROSS model.  
 
Estimated coefficients for variables representing encounters with fuel treatments varied in 
statistical significance between the two models. Coefficient on RX is positive and statistically 
significant using observed I-Suite data as the dependent variable but insignificant when using 
predicted values from ROSS. The interaction term RX*EAST has a negative and statistically 
significant coefficient across models, but is larger in magnitude in the ROSS specification. 
Greater differences between the models existed with respect to the magnitude and significance of 
the estimated coefficients representing encounters with previously burned areas. The interaction 
term FIRE*EAST is more than double in absolute magnitude when using the predicted values 
from ROSS relative to the observed I-Suite data. Furthermore, the estimated coefficient for 
FIRE*LOWRX is not significant in the ROSS specification.  
 
Ultimately, given the constrained sample of fires the predicative capabilities of the ROSS data 
and their ability to supplement the I-Suite fire management cost data for our purposes were 
deemed insufficient. Prediction quality of daily fire management costs varied considerably 
within and between fires, and discrepancies regarding the magnitude and statistical significance 
of estimated model coefficients for variables of interest between suppression cost regression 
analysis using predicted and observed fire management cost data were discouraging. Therefore, 
we decided against using the ROSS data to predict daily wildland fire management costs for a 
greater sample of fires. This exercise, though, can be considered a pseudo-validation since the 
accuracy of the I-Suite data itself is not well understood by the fire science and management 
community.  
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Table 8 Comparing actual and predicted Ln(COST) regressions. 

 (1) (2) 
 
Variables 

I-Suite 
Ln(COST) 

ROSS-predicted 
Ln(COST) 

IMT_2 -0.213 -0.015 
 (0.230) (0.215) 
IMT_3 -1.185*** -0.701*** 
 (0.276) (0.231) 
IMT_4 -2.429*** -1.650*** 
 (0.475) (0.329) 
IMT_LOCAL -3.146*** -2.444*** 
 (0.631) (0.466) 
IMT_UC 0.110 0.544* 
 (0.380) (0.313) 
POP 0.189** 0.178* 
 (0.091) (0.103) 
REMOTE 0.103** 0.069* 
 (0.044) (0.037) 
TOPO 0.005 -0.003 
 (0.009) (0.005) 
FUEL 0.051 0.032 
 (0.032) (0.057) 
ERC 0.016* 0.003 
 (0.009) (0.003) 
RX 0.443** 0.240 
 (0.182) (0.224) 
RX*LOWPOP 0.012 0.062 
 (0.252) (0.253) 
RX*LOWRX -0.160 0.144 
 (0.314) (0.445) 
RX*EAST -0.758** -1.024* 
 (0.337) (0.579) 
FIRE 0.319** 0.513*** 
 (0.129) (0.184) 
FIRE*LOWPOP -0.192 -0.276 
 (0.139) (0.201) 
FIRE*LOWRX -0.331** -0.496 
 (0.148) (0.461) 
FIRE*EAST -0.252** -0.595** 
 (0.118) (0.260) 
   
Observations 884 884 
R-squared 0.608 0.502 
Number of fires 53 53 
Cluster robust standard errors (clustered by fire) in parentheses. 
*** p<0.01, ** p<0.05, * p<0.1 
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Conclusions 
The use of national-scale, spatially explicit fuel treatment and wildland fire data was sufficient to 
achieve the main project goal of estimating the effect of a fire entering fuel treatments and 
previous fires on fire management costs. This study leveraged nationally consistent spatial 
datasets to describe the fire environment as well as the spatial distribution of fuel treatments and 
previously burned areas. Since an original project objective was to evaluate treatment effects 
across major ecosystem types, we were conscious to obtain high-quality data that was consistent 
across the entire CONUS. Prior to this project, no study had leveraged the LANDFIRE fuel 
treatment dataset containing spatial polygons of completed fuel treatments between 1999 and 
2012. 
 
In contrast to naïve expectations, we found that encounters with fuel treatments and previously 
burned areas were associated with an increase in daily wildland fire management costs, likely 
because these areas were capitalized to increase suppression effectiveness in fuel-limited areas. 
 
Previous prospective evaluations of fuel treatment and previous fire effects on fire suppression 
costs have employed simulation frameworks to demonstrate significant reductions in suppression 
costs due to treatments (Thompson et al. 2013, Houtman et al. 2013). These approaches rely on 
the previously established correlation that fire size is positively associated with suppression 
expenditures, and therefore, decreases in future area burned due to treatments and previously 
burned areas are expected to reduce suppression costs. Existing suppression cost regression 
equations can be used to estimate the magnitude of the effect (Gebert et al. 2007). Because these 
approaches use aggregated, fire-level suppression cost data, the effect of fuel treatments on 
suppression costs may be masked because changes in suppression resource use and strategies as 
the fire progresses cannot be captured. In effect, previous studies have assumed a constant 
management strategy throughout the course of a fire, when it is likely that suppression effort 
changes as fires spread. To take advantage of fuel treatment’s ability to enhance suppression 
effectiveness, risk-averse fire managers may be compelled to allocate additional suppression 
resources to these areas to maximize the likelihood of containment. What remains unclear is 
whether the temporary increase in suppression effort and associated costs in treated or previously 
burned areas is offset by an overall reduction in the duration of an incident.  
 
Restricted access to historical daily fire management cost data remains a significant barrier to 
evaluating fire management decision-making. Although a formal appeal for daily fire 
management cost data was approved by individuals within the Forest Service’s National Incident 
Business Organization, we ultimately received a small fraction of fire management cost data 
relative to our original request. There remains no clearinghouse of historical financial data 
related to wildland fire management activities, and such a barrier prohibits robust evaluations of 
decision-making that can lead to improved future outcomes.  

Implications for Management 
There exists an assumption within the wildland fire science and management community that 
investments in fuel treatments will result in decreased future fire management costs. In order for 
this to manifest, wildland fires must interact with fuel treatments during the lifespan that 
treatments remain effective. Our finding that 6.7% of treatments on federal lands between 1999 
and 2012 were encountered by a subsequent fire by 2013, and that only 7.7% of the total treated 
area was burned by a subsequent fire through 2013, raises questions over the validity of such an 
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assumption. Low encounter rates may stem from three primary sources: 1) the stochastic nature 
of wildland fire in terms of occurrence and extent; 2) constraints on optimal fuel treatment 
locations; or 3) decisions to suppress unplanned ignitions prior to encounters with treatments. A 
better understanding of the drivers of the relatively low encounter rates observed in this study 
can help guide future wildland fire and fuels management decision-making.  
 
In addition, fuel treatments should encourage the use of less aggressive suppression responses in 
order to achieve reductions in fire management costs. Our finding that daily fire management 
costs are positively associated with encounters with fuel treatments and previously burned areas 
suggests that these areas may instead be used to facilitate suppression operations. Although this 
topic warrants further research, our results suggest that the expected negative feedback between 
treatments and subsequent fire management costs is limited to certain landscape contexts. 

Implications for Future Research 
Although this project yielded insights into the potential effects of fuel treatments and previously 
burned areas on fire management costs, there are several natural research extensions that warrant 
investigation. An explicit consideration of the temporal dynamics and long-term interactions 
between fires and previous fuel treatments and burned areas is arguably the most critical need for 
a formal evaluation of fire and fuels management programs. A successful fuels management 
program is not necessarily one that achieves an immediate return on investment, but rather one 
that over time facilitates the use of fire to achieve land and resource management objectives 
(Reinhardt et al. 2008). It is plausible that the current rate of fuel treatment implementation and 
area burned by wildland fire is insufficient to effectively reduce landscape-level fire risk and 
expand the fire management decision-space (Barnett et al. 2016, Vaillant et al. 2017). A 
continued focus on strategic fuel treatment implementation coupled with capitalizing on low-risk 
opportunities to use unplanned ignitions to achieve land and resource management objectives is 
necessary to attain long-term reductions in wildland fire management costs.  
 
Because daily fire management cost data are only archived for incidents that were at some point 
managed by a Type 1 or Type 2 incident management team, the results from this project have a 
relatively limited scope of inference. It is highly plausible that this criterion restricted the 
analysis to fires where the overarching management objective was to minimize area burned, and 
therefore treatments and previously burned areas were leveraged to facilitate suppression 
operations. Myriad examples from wilderness and other areas where fire has been successfully 
managed suggest that past fires serve as important barriers to fire spread. In response, managers 
allocate fewer suppression resources to such areas. It is likely that we were unable to capture this 
expected feedback given the data restrictions. 
 
Lastly, future research should address the selection bias related to the likelihood a fire encounters 
a treatment or previously burned area. That is, the probability that a fire spreads into a treatment 
or previously burned area is not random, and therefore the estimated coefficients of interest from 
this study may be biased. In the program evaluation literature where non-experimental data are 
the norm, propensity score matching methods have proven to be an effective approach to 
construct quasi-control groups and overcome issues related to selection bias. This approach 
would be best implemented when evaluating aggregate fire cost rather than at the daily costs.  
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Appendix C: Metadata 
The dataset used for the final analysis and corresponding metadata have been published at:  
 
Barnett, Kevin; Naughton, Helen T.; Parks, Sean A.; Miller, Carol. 2017. “Fuel treatment and 

previous fire effects on daily fire management costs.” Fort Collins, CO: Forest Service 
Research Data Archive. https://doi.org/10.2737/RDS-2017-0050 

 

Data Publication Abstract: 
This publication contains tabular data used to evaluate the effects of fuel treatments and 
previously burned areas on daily wildland fire management costs. The data represent daily Forest 
Service fire management costs for a sample of 56 fires that burned between 2008 and 2012 
throughout the conterminous United States. Included in the data is a suite of spatially derived 
variables used to control for variation in daily fire management costs, including topography, fire 
weather, fuel loading, remoteness, and human populations-at-risk. These data were extracted 
using daily fire progression maps produced using the methods outlined in Parks (2014). 


