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Abstract 
Fire frequency and severity in southern California and across the western United States 

is increasing, posing a concern to the safety and well-being of communities and ecosystems. 
Increased aridity coupled with water stressed vegetation from prolonged droughts are leading 
to a higher propensity for larger, more intense fires that impact ecohydrological processes. 
Accurate characterization of these processes will improve rapid response efforts and long-term 
resource management to promote resilient communities along the wildland-urban interface. 
This work investigates prediction tools for small watersheds, where post-fire effects occur at a 
disproportional rate, by presenting methods to improve rapid predictions of post-fire 
streamflow and long-term monitoring of ecohydrological recovery. A random forest machine 
learning algorithm with 45 watershed parameters was created to predict post-fire peak 
streamflow for 1920 to 2019. This flood forecasting technique incorporated additional 
characteristics about meteorological and watershed properties to improve predictions of peak 
streamflow compared to flood frequency methods such as Rowe et al. (1949). The time elapsed 
after fire, peak hourly rainfall intensity, and drainage area were important factors that 
represented realistic conditions and increased accuracy of the random forest predictions. We 
used the case of the 2018 Holy Fire in southern California to characterize pre-fire climate and 
vegetation interactions and monitor post-fire recovery of ecohydrological processes (rainfall-
runoff and evapotranspiration) for unburned (Santiago) and burned (Coldwater) catchments. 
ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), 
Operational Simplified Surface Energy Balance Model (SSEBop), satellite-based vegetation 
indices, and local rainfall-runoff data were incorporated into our analyses. Consistent with the 
drought conditions in California from 2012 to 2018, we observed low precipitation and 
evapotranspiration prior to the fire. Further, large pre-fire vegetation biomass and areas 
containing montane hardwood species were more likely to be classified as high soil burn 
severity. Between ECOSTRESS and SSEBop there was larger variability in evapotranspiration 
estimates after fire compared to pre-fire, which had implications for post-fire vegetation 
recovery and water storage. The water balance highlighted variability in predicted storage 
between burned and unburned catchments, which was dependent on the evapotranspiration 
model used. ECOSTRESS PT-JPL model was more sensitive to parameters such as land 
surface temperature, net radiation, slope aspect, soil burn severity, and vegetation species due 
to higher spatial resolution. The findings of this research improves upon our current methods in 
modeling post-fire peak flows and post-fire vegetation recovery in southern California and has 
potential for future applications in management and planning. 
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1. Objectives 
The primary objectives of this study (Table 1), were to identify knowledge gaps in post-

fire watershed models and improve the performance of a widely used post-fire peak flow 
prediction tool (Wilder et al., 2021). Additionally, we characterized pre-fire vegetation 
conditions and post-fire vegetation recovery after the 2018 Holy Fire using high resolution 
satellite products (Wilder & Kinoshita, in review). 
 
 
Table 1. Originally proposed objectives and projected delivery dates (check marked if 
completed) 

 
 
 

2. Background 
Fire frequency and severity in California, and across the western United States, are 

increasing (Steel et al., 2015). Increased aridity coupled with decades of fire suppression and 
water stressed vegetation from prolonged droughts are leading to a higher propensity for larger 
and more intense fires that directly impact ecohydrological processes. Accurate characterization 
of these processes will improve rapid response efforts and long-term resource management to 
promote resilient communities along the wildland-urban interface.  

Across the State of California, the percent county area burned (proportion of total burned 
area in relation to county area) ranged from 0-65% over the past 20 years (Figure 1). While some 
counties in northern California had proportions of burned area that were over 50%, this work 
focuses on understanding the impacts of wildfire in southern California which has had some of 
the most destructive fires in the state (CAL FIRE, 2021). High proportions of total wildfire area 
in southern California from 2000 to 2020, include Ventura County (50%), San Diego County 
(37%), Los Angeles County (28%), Santa Barbara County (22%), and Orange County (15%). 
These frequent fires can change the post-fire landscape, producing elevated peak streamflows in 
small watersheds (Neary et al., 2005) and variant (spatially and temporally) ecohydrological 
recovery (Kinoshita & Hogue, 2011). Under changing climate and wildfire regimes, accurate 
predictions of post-fire peak streamflow rates and ecohydrological recovery are critical for key 
emergency response and management agencies such as the California Department of Forestry 
and Fire Protection (CAL FIRE), California Department of Conservation – California Geological 
Survey (CGS), the U.S. Forest Service (USFS), and local county flood control districts who seek 
to mitigate risks associated with post-fire flooding and erosion. Further, long-term vegetation 
assessments are essential for planning and informing recreational infrastructure such as trail and 
road access to the public. 

Models used to predict post-fire hydrologic processes have varying degrees of 
sophistication (Atchley et al., 2018; Cannon et al., 2004; Kinoshita et al., 2014; Robichaud et al., 
2007; Wilder et al., 2021). Due to the short time period between fire and flood in southern 
California, simpler flood frequency models such as Rowe et al. (1949) are prioritized to rapidly 

 
 



2 

assess risks to downstream communities and ecosystems (Kinoshita et al., 2014; Wilder et al., 
2021). Thus, this research investigates methodologies to improve prediction tools for rapid and 
long-term risk assessments for downstream communities and ecosystems. We demonstrate how 
machine learning methods can be implemented into assessments immediately after fire. We also 
incorporate a case study to estimate annual water yield in semi-arid sites for small, burned 
watersheds and close the water balance for fire-prone landscapes.  
 

 
 

Figure 1. Percent of county area burned in California from 2000 to 2020 (data source: Moderate 
Resolution Imaging Spectroradiometer Burned Area Monthly Global at 500-m). Study area 
shown in the dashed black rectangle. 
 
 

3. Materials and Methods 
The study area is within the Transverse Ranges and Peninsular Ranges, which are 

geomorphic provinces with a wide topographic range from sea level to 3506 m (CGS, 2002). The 
study area straddles the southern California Coastal and southern California Mountain and 
Valleys ecoregions (Cleland et al., 2007). Approximately 60%–70% of these ecoregions are 
dominated by shrubland (e.g., chaparral) vegetation types, with a lesser proportion occupied by 
grassland and woodland or forest vegetation types (FRAP, 2015). The median presettlement fire 
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return intervals for these vegetation types are variable, ranging on average from approximately 
60 to 100 years for chaparral and coastal scrub vegetation types (Van de Water & Safford, 2011).  

This research focused on 33 small watersheds with drainage areas ranging between 1.2 to 
41.7 km2 (Figure 2) to address the primary objective of this study: to identify knowledge gaps in 
post-fire watershed models and improve the performance of a widely used post-fire peak flow 
prediction tool (Section 3.1). Additionally, we characterized pre-fire vegetation conditions and 
post-fire vegetation recovery after the 2018 Holy Fire using satellite products (Section 3.2). The 
Holy Fire occurred in the Santa Ana Mountains in early August of 2018 (Figure 2) and burned 
approximately 94 km2. The soil burn severity classifications for the Holy Fire were 
approximately 14% high, 71% moderate, 8% low, and 7% low to unburned (WERT, 2018). It is 
noted that the 2020 Bond Fire burned the foothills approximately 20 km northwest of the Holy 
Fire. The Bond Fire occurred almost entirely outside of the study area and after the study period, 
thus minimally impacting our analysis. 

 
 

 
Figure 2. Study area consisted of 33 watersheds in 6 different regions within the Transverse 
Ranges and Peninsular Ranges in southern California, USA. The 2018 Holy Fire is noted by a 
red oval. 

 
 

 
 

Holy Fire 
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3.1 RCS Evaluation and Machine Learning Peak flow Model 
  Post-fire peak flow observations for the 33 study watersheds were acquired from the 
USGS for the study period between 1920 to 2019 (Wilder et al., 2021). The flood recurrence 
intervals for peak flow observations were computed by the Weibull and USGS PeakFQ methods 
(Clarke, 2002; Flynn et al., 2006) and the two methods were averaged to form baseline peak flow 
observations for each watershed. A regression analysis was used to compare the pre- and post-
fire baseline observations to the RCS 1949 (Rowe et al. (1949)) flood frequency methodology. 
Correlation (R2), root mean squared error (RMSE), standard deviation, and bias were calculated 
to assess performance of 2- and 10-year recurrence interval predictions, the most used recurrence 
intervals for flood prediction in southern California. 

We developed a flood forecasting, machine learning (random forest) algorithm using 
hydrological and meteorological input data provided by new information and technologies. The 
inputs of this model were formulated by aggregating 45 unique watershed parameters based on 
an extensive post-fire literature review. We identified important factors that represented realistic 
conditions and increased accuracy of the random forest predictions, which were used to develop 
a random forest with five unique watershed parameters (RF-5). Our developed model predicted 
post-fire peak flow rates for small watersheds (Wilder et al., 2021).  

 
3.2 Spatial and Temporal Ecohydrological Analysis  

  Building upon previous studies (i.e., Poon & Kinoshita, 2018), we incorporated ET at 
improved resolution to assess disturbance from fire in small watersheds (Wilder & Kinoshita, in 
review). Local rainfall and runoff data were used to calculate hydrologic signatures (McMillan, 
2020) at the annual timescale to quantify changes in streamflow, water balance, and recovery 
based on a paired watershed approach. These metrics were calculated for Santiago and 
Coldwater for WY 2014 to 2020 for all available streamflow data. Additional data were collected 
including ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station 
(ECOSTRESS) Priestley-Taylor Jet Propulsion Laboratory Algorithm (PT-JPL) ET (ETPT-JPL), 
Operational Simplified Surface Energy Balance Model (SSEBop) ET (ETSSEBop), satellite-based 
annual vegetation biomass accumulation using summation of Enhanced Vegetation Index 
(ΣEVI), vegetation species types using CAL FIRE Fveg database, and soil burn severity 
classifications. Spatial datasets were analyzed in Google Earth Engine and differentiated with 
respect to slope aspect, pre-fire vegetation species, riparian versus hillslope, and soil burn 
severity classifications.   
  

4. Results and Discussion 
4.1 RCS Evaluation and Machine Learning Peak Flow Model 

  We compared the pre-fire predictions with the baseline observed data normalized by the 
watershed area (Figure 3). In total, the pre-fire 2-year return period had a positive bias of 0.162 
cms/km2 and the 10-year return period had a negative bias of −0.791 cms/km2. There was also 
substantial error in RMSE and variation in standard deviation that RCS 1949 did not represent. 
For example, the standard deviation for the RCS 10-year return period was 0.31 cms/km2, while 
the standard deviation of the observed 10-year return period was 1.28 cms/km2. The Santa Ynez 
region had the lowest accuracy by region for the 10-year return period, bias = −2.362 cms/km2, 
and Franklin Canyon, within the Santa Ynez region, had the lowest accuracy for all watersheds, 
where 10-year return period peak flow was under-predicted by a factor of 4.75. Overall, pre-fire 
peak streamflow prediction performance was low for the 2- and 10-year recurrence interval 
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events (R2 = 0.24 and RMSE = 0.38 cms/km2; R2 = 0.34 and RMSE = 1.43 cms/km2, 
respectively). 
 

 
 
Figure 3. Rowe, Countryman, and Storey (RCS) unburned peak streamflow predictions 
compared to observed peak streamflow for 2‐year (A) and 10‐year (B) return periods. 

 
Based on post-fire observed flow, 22 watersheds experienced flooding that were under 

predicted by the RCS 10 year predictions during the first five years after fire. Observed post-fire 
flows were compared to the probabilistic predictions, yielding R2 and RMSE for RCS 2-year 
return periods of 0.26 and 16.01 cms/km2, and R2 and RMSE for RCS 10-year return periods of 
0.25 and 15.52 cms/km2, respectively. Predictions generally had large negative bias with 2-year 
return periods yielding −8.68 cms/km2 and 10-year return periods yielding −7.78 cms/km2. 
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Regionally, 13 watersheds observed post-fire peak streamflow rates larger than the RCS 100-
year prediction. Watersheds in the San Diego and San Jacinto regions had on average 149% 
lower post-fire peak streamflows compared to the other regions. Predictions for watersheds in the 
Santa Ynez, San Gabriel, San Bernardino, and Santa Ana mountains were inaccurate, with errors 
ranging up to 1720% during the floods at Dickey Canyon after the 2018 Holy Fire. These flows 
were rapid, where field observed velocity was measured to be approximately 12 m/s (B. 
Swanson, personal communication, October 2019).  

In general, RCS 1949 demonstrated large inaccuracy for small watersheds (1 to 42 km2). 
This is attributed to a multitude of factors including watershed morphology, exclusion of soil 
burn severity, greater development in the wildland urban interface, and increasing frequency in 
extreme weather events due to climate change since the development of this model. The largest 
inaccuracies were observed for watersheds in the Santa Ynez Mountains, which is of concern due 
to the tendency for hazardous events in this region, such as the January 9, 2018 Montecito debris 
flows (Kean et al., 2019). Clear water flows generally have suspended-sediment concentrations 
of less than 5% to 10% sediment by volume, while hyperconcentrated flows and debris flows can 
have suspended-sediment concentrations from 5% to 60% and >60% sediment by volume, 
respectively (Pierson, 2005). The RCS 1949 regressions were developed for flows with low 
sediment concentrations (non-bulked flows); therefore, RCS predictions are expected to be 
limited and unable to predict peak flows associated with debris flows. Accurate predictions of 
post-fire streamflow along the continuum from flooding to debris flows are needed due to their 
frequent occurrence following wildfire in southern California (Cannon & DeGraff, 2009).  

Our results highlight the need to incorporate the significant advances in post-fire 
hydrology since the development of Rowe et al. (1949) to improve the accuracy of predictions 
(Wilder et al., 2021). For example, sediment bulking is implicit in RCS, yet independent 
variables that are strongly linked to sediment production or sediment yield are not used. 
Additionally, this observation-based method predates the development of the soil burn severity 
metric. Soil burn severity characterizes the fire-induced changes in soil and ground cover 
properties that can affect infiltration, runoff, and erosion potential (Parsons et al., 2010) and is 
incorporated in post-fire hydrogeomorphic modelling as an independent variable to predict debris 
flows and debris yield (Gartner et al., 2014; Staley et al., 2017). 

A random forest machine learning algorithm with 45 watershed parameters (RF-45) was 
created with meteorological and watershed properties to predict post-fire peak streamflow for 
1920 to 2019. The time elapsed after fire, peak hourly rainfall intensity, and drainage area were 
important factors that represented realistic conditions and increased accuracy of the random 
forest predictions and were represented in the RF-5 model (RF-5 contained five most important 
parameters). The RF-5 model (R2 = 0.46 and RMSE = 7.89 cms/km2) performed better than the 
RCS method and was better able to capture the extreme variability of post-fire peak flows 
(Figure 4). This is exemplified by the model sensitivity to the extreme post-fire responses for the 
33 highest magnitude post-fire storm events for each of the study watersheds (Figure 5). The 
RCS 2-year and RCS 10-year RMSE values were 16.01 cms/km2 and 15.52 cms/km2, 
respectively, while the random forest machine learning model RMSE was lower at 10.41 
cms/km2.  
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Figure 4. Predictions for the five parameter random forest (RF‐5) model by region. The sample 
size (n) is noted for each region. 

 

 
 
Figure 5. Observed peak streamflow versus predicted streamflow response. The black line 
represents a perfect prediction. Squares represent RCS (2‐ and 10‐year events) and triangles 
represent random forest with the five most important parameters (RF‐5). RF‐5 is based on the 
entire training dataset and has no affiliated event magnitude. The extreme conditions or the 
highest floods for each watershed are shown (n = 33). 
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Our findings from the machine learning approach agreed with previous studies. For 
example, peak hourly rainfall intensities over 10 mm/h led to larger magnitude floods (Figure 
6a). These results are attributed to physical watershed processes, whereby larger peak rainfall 
intensities increase rill erosion and channel incision (Cannon & DeGraff, 2009). Watersheds with 
smaller areas (1–10 km2) were more likely to have larger magnitude runoff per unit area (p < 
0.05) (Figure 6b). Our observations are similar to Neary et al. (2005), who reported much larger 
magnitudes (average post-fire peak flows of 193 cms/km2) for very small watersheds in Western 
United States (<1 km2). Further, in smaller watersheds with predominantly chaparral vegetation, 
runoff responses can be erratic and have potential to transport large amounts of sediment per unit 
area after fire (Keller et al., 1997), highlighting the increased potential for higher magnitude peak 
flows. Finally, storms that occurred closer in time to the containment of the fire had a higher 
likelihood of larger magnitude events (p < 0.05) (Figure 6c). The passing of time allows 
hydrophobic soils to normalize and vegetation to recover, reducing rainfall impact on bare soil 
(Neary et al., 2005). 

The most important parameters identified by machine learning were time after fire (to 
distinguish events within the first year), rainfall intensity, and burned area and used to create a 
simple regression. Thirty-one rainfall-runoff events during the first year after fire from the study 
area were fitted to a three-dimensional polynomial function (R2 = 0.82): 
 

𝑄𝑝𝑘 = −8.316 + 0.4033(𝐴) + 0.9041(𝑖60) − 0.04079(𝐴)(𝑖60) + 0.0127(𝑖60)!         (1) 
 
where Qpk is peak streamflow (cms/km2), A is burned area (km2), and i60 is peak hourly rainfall 
intensity (mm/h). Watershed area and watershed perimeter were not used for the regression. On 
average, burn proportions consisted of 56% moderate to high soil burn severity and 44% 
unburned to low soil burn severity.  

Machine learning requires data collection, calibration, and parameterization that should 
be carried out cautiously. Excluding or missing parameters that have significant importance to 
model accuracy can lead to highly inaccurate predictions due to insufficient processes being 
defined by the data. Nevertheless, our study demonstrates that with enough high-quality data, 
machine learning can be a valuable procedure for developing predictive tools for post-fire risk 
assessment.  
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Figure 6. Observed peak streamflow per unit area with respect to peak hourly rainfall intensities 
(a), watershed size (b), and days after fire containment (c). 

 
4.2 Vegetation Production for the 2018 Holy Fire Site 

  Annual SPI (WY 1991 to 2020) and ETSSEBop (WY 2001 to 2020) were calculated for the 
Holy Fire burn scar (Figure 7). Wet years appeared intermittently, typically after four to six 
moderately dry to normal years. No years had an SPI greater than 1.0 in 2012 to 2018 (no wet 
years), highlighting the seven year drought period prior to the fire. This extended dry period is 
documented as an extreme drought that caused widespread plant stress across northern and 
southern California (Dong et al., 2019). Water year 2019 was a moderately wet year that 
followed the Holy Fire (SPI = 1.17). This year had several intense storms, with 15-minute 
rainfall intensities as high as 32 mm/hr (Guilinger et al., 2020). 
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Figure 7. Standardized Precipitation Index (SPI) for WY 1991 to 2020 and annual ETSSEBop for 
WY 2001 to 2020 for the area affected by the Holy Fire. The approximate date of the fire is 
denoted by a vertical dashed line. 

 
 From WY 2001 to 2017, the average annual pre-fire ETSSEBop was 722 mm for the entire 
area and ranged from 610 to 947 mm. The three years prior to the fire had the lowest ET, ranging 
from 610 to 625 mm. Additionally, all seven years prior to the fire were below the pre-fire 
average. A modest correlation existed between pre-fire annual ET and SPI (R2 = 0.41; n = 17), 
where generally the extreme wet and dry years had relatively high ET (i.e., 947 mm in WY 
2005) and low ET (i.e., 678 mm in WY 2007), respectively. After the fire in 2019, there was 
1,036 mm of rainfall, resulting in a large resurgence in ET (44% increase) in WY 2020. Focusing 
on the seven year drought period (WY 2012 to 2018; note that 2018 only includes August and 
September prior to the fire), we compared the monthly ETSSEBop to the eleven years prior to the 
drought (WY 2001-2011). This period encompassed typical cyclical climate fluctuations (two 
moderately wet years, two moderately dry years, and seven normal years) associated with El 
Niño-Southern Oscillation patterns. The two time periods were statistically different (p < 0.05) 
for all months (except for November), where the seven year drought before the fire had 
significantly lower ET. During the pre-fire period (WY 2001 to 2017), monthly ET typically 
peaked in the dry season between June to July, with values ranging from 64 to 151 mm/month. 
Most notably, one month prior to the fire in WY 2018, the observed ET had the lowest July 
monthly value of 64 mm/month.  
 The prolonged drought had a significant impact on montane hardwood species and other 
areas, making these areas more prone to high soil burn severity (Figure 8). Areas with larger pre-
fire ΣEVI, ranging from 14 to 16, were associated with high soil burn severity (p < 0.05). In 
particular, montane hardwood species had the greatest proportion of high soil burn severity for 
all vegetation types, where 33% of this vegetation type burned at high severity. We hypothesize 
that the severe seven year drought prior to the fire increased water stress and fuel load in the 
montane hardwood species in the Holy Fire area, explaining the increased severity observed 
(Guarín & Taylor, 2005). While ECOSTRESS was not available prior to the fire (launched in 
June 2018), we advocate that ET and ESI (evaporative stress index) can be important tools for 



11 

future assessments of water stress and potential fire risk.  
 

 

 
 
Figure 8. Pre-fire ΣEVI (WY 2014 to 2017) with respect to soil burn severity in the Holy Fire, 
where n represents number of EVI pixels. The proportion of soil burn severity for each of the 
vegetation types are shown on the secondary axis. 
 

We examined the variability of the remotely sensed ET throughout the burned landscape. 
ETSSEBop and ETPT-JPL images before and after the Holy Fire were compared and resulted in 
comparatively higher variability between the two ET products after the fire (Figure 9). The pre-
fire R2 was 0.47, while post-fire R2 ranged from 0.00 to 0.04. The pre-fire slope of the linear 
regression between the two datasets was 0.36 (Figure 9c). The range decreased post-fire to 
values between -0.10 to 0.12 and the standard error of the regression line was generally larger for 
the post-fire images (Figures 9f and 9i). The large variability observed between ETSSEBop and 
ETPT-JPL for both post-fire years were likely due to the inherent and complex spatial heterogeneity 
of the burned conditions. This can lead to sub-pixel contamination of the SSEBop pixels for the 
sensitive inputs such as land surface temperature and reference ET (Chen et al., 2016). SSEBop 
at 1 km spatial resolution may not be suitable for capturing fine-scale post-fire processes of 
semi-arid and dry regions and is noted by Chen et al. (2016) to be most reliable for large-area 
estimates of ET. The smaller footprint of ETPT-JPL better captures spatial heterogeneity present in 
post-fire parameters such as land surface temperature and reference ET.  
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Figure 9. Spatial representation of ETPT-JPL and ETSSEBop pre-fire on August 2, 2018 (a and b), 
one year after fire on August 17, 2019 (d and e), and two years after fire on October 3, 2020 (g 
and h). Correlations between ETPT-JPL and ETSSEBop (n = 103 pixels) (c, f, and i) include a 
regression line and shading, which represents the standard error. 

 
Additionally, rainfall from the Upper Silverado rainfall station, difference in ET between 

the two watersheds (ΔETPT-JPL), and runoff between the two watersheds for WY 2019 to 2020 
highlighted seasonal patterns in the post-fire recovery (Figure 10). The burned watershed had 
comparatively higher magnitude of runoff in the winter months and reduced ET in the summer 
months. ET differences between the two watersheds were highly sinusoidal after the fire. The 
largest difference in magnitude (2 to 3 mm) between the unburned and burned watersheds was in 
the dry months and the smallest difference (0 to 1 mm) was during the wet months. In general, 
based on ETPT-JPL measurements, the burned watershed produced less ET during the post-fire 
study period than the unburned watershed for all seasons. This supported the findings of previous 
studies, which have noted decreased post-fire ET in semi-arid regions (Poon & Kinoshita, 2018; 
Prater & DeLucia, 2006; Ma et al., 2020; Nolan et al. 2014; Soulis et al., 2021). 
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Figure 10. Daily rainfall (a), difference in daily evapotranspiration (ΔET) from WY 2019 to 
2020 (b), and Coldwater and Santiago daily streamflow (c). The difference in ECOSTRESS PT-
JPL ET (ΔETPT-JPL) is Santiago (unburned) minus Coldwater (burned). The dashed green line 
represents a 60 day rolling average of ΔETPT-JPL. 

 
Cumulative ETPT-JPL collected from February 2019 to October 2020 (73 images) varied 

with respect to landscape subgroups: slope aspect, soil burn severity, riparian/hillslope, and pre-
fire vegetation species (Table 2). ET production was homogeneous across the landscape 
subgroups during the first year after fire. Most notably for WY 2019, the montane hardwood 
species in higher elevations had the largest ΣET for the first year after fire. In WY 2019, the ET 
and EVI varied minimally by slope aspects, burn severity, and riparian areas (+/-2 mm from the 
mean), suggesting relatively homogeneous conditions across the burned landscape. Differences 
in the ET production across the landscape subgroups was not observed until the second year after 
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fire. In WY 2020, areas with pre-fire montane hardwood species had the highest ET production 
(297 mm) out of all the vegetation species. Also for WY 2020, high burn severity areas had the 
second largest ET production (296 mm) out of all the subgroups and areas of west facing slopes 
had the third highest ET production (294 mm).  

  
 
Table 2. Cumulative ETPT-JPL (ΣET) from WY 2019 (25 images) and WY 2020 (48 images) for 
the Holy Fire with respect to riparian versus hillslope, soil burn severity, slope aspect, and pre-
fire vegetation species. 

Landscape sub-groups WY 2019 
ΣET (mm) 

WY 2020 
ΣET (mm) 

Riparian (n=1,205) 118 283 

Outside of riparian (n=17,979) 120 289 

High (n=2,743) 120 296 

Moderate (n=13,563) 119 289 

Low (n=1,477) 120 272 

North (n=7,014) 121 290 

East (n=5,019) 119 284 

South (n=4,251) 119 289 

West (n=2,900) 122 294 

Mixed Chaparral (n=12,878) 120 290 

Montane Hardwood (n=3,000) 124 297 

Coastal Scrub (n=1,038) 110 261 

Mean for the burned area 120 287 
Standard Deviation for the burned area 5 11 

 
Post-fire ETPT-JPL data appeared to represent the conditions of the Holy Fire and were 

similar to other studies that documented decreases in post-fire ET (Poon & Kinoshita, 2018; 
Prater & DeLucia, 2006; Ma et al., 2020; Nolan et al. 2014; Soulis et al., 2021). However, more 
work needs to be done to field validate ETPT-JPL in post-fire settings across diverse ecoregions 
and longer timespans. Along with ground-based validation efforts, the use of Unmanned Aircraft 
Systems (UAS) may present an opportunity to improve certainty in post-fire assessments of 
satellite-based ET (Fernández-Guisuraga et al., 2018). Additionally, soil moisture was not within 
the scope of this work, however, future studies are encouraged to integrate field observations and 
measurements of soil moisture to provide further insight into the water balance and storage 
dynamics for burned catchments. While this study is a preliminary presentation of ECOSTRESS, 
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we advocate that high spatial and temporal resolution data will supplement and aid in answering 
crucial science questions for future fires. For example, like Poon & Kinoshita (2018), we 
identified general patterns during our study period using a lower resolution SSEBop product. 
However, ECOSTRESS provides scientists with higher resolution tools (i.e., ET and Evaporative 
Stress Index products) that can be used to improve precision for fire analysis. In the case of the 
Holy Fire, areas such as the montane hardwoods that burned at high soil burn severity can be 
evaluated by scientists to understand pre-fire water stress and dead above-ground biomass 
accumulation at finer resolutions. This work demonstrates the potential to incorporate tools for 
monitoring ecohydrological processes for small catchments affected by fire across diverse 
ecoregions around the globe. 
 
 

4.3 Science Delivery Activities 
This work was disseminated through peer-reviewed publications, research conference 
presentations, and data repositories. The primary goal of this project was published as a thesis 
and journal article (1 and 2), and the secondary goal was submitted for peer- review (3): 
 

1. Wilder, B.A., J. Lancaster, P. Cafferata, D. Coe, B. Swanson, D. Lindsay, W. Short, A.M. 
Kinoshita, 2020. An analytical solution for rapidly predicting post-fire peak streamflow 
for small watersheds in southern California. Hydrological Processes, 1–14. 
https://doi.org/10.1002/hyp.13976.  

2. Wilder, B. A. (2021). Runoff Prediction and Ecohydrological Recovery for Small 
Watersheds after Fire Southern California [Unpublished master’s thesis]. San Diego 
State University 

3. Wilder, B.A., and A.M. Kinoshita, Monitoring Fire Severity and Ecohydrological 
Recovery for the 2018 Holy Fire in Southern California. In review.  

 
This work resulted in the following 7 conference presentations (*indicates presenting author): 
 

1. Wilder, B. * and A.M. Kinoshita, 2020. Post-fire Vegetation and Hydrologic Recovery in 
a Mediterranean Climate. American Geophysical Union Fall National Meeting, 
December 2020, Virtual. (Poster).   

2. Wilder, B.* and A.M. Kinoshita, 2020. Flood after fire in Southern California – 
Incorporating Machine Learning to Identify Important Parameters for Process-based 
Hydrologic Models. SDSU Student Research Symposium (SRS), San Diego, CA, 
February (Poster, Student received the Provost’s Award in the College of 
Engineering). 

3. Wilder, B.* and A.M. Kinoshita, 2020. Flood after fire in Southern California – 
Incorporating Machine Learning to Identify Important Parameters for Process-based 
Hydrologic Models. 2020 IECA Annual Conference and Expo, February, Raleigh, North 
Carolina, USA (Poster; Selected and sponsored to attend as a Student Moderator, 
Student received 1st place award) 

4. Wilder, B.* and A.M. Kinoshita, 2019. Post-wildfire peak streamflow predictions for 
small watersheds in southern California, USA. American Geophysical Union Fall 
National Meeting, December 2019, San Francisco, CA, USA. (Oral).   
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5. Wilder, B.* and A.M. Kinoshita, 2020. Predicting Post-Wildfire Peak Streamflow for 
Small Watersheds in Southern California. SDSU and USGS Collaboration workshop at 
Coastal and Marine Institute, San Diego, California, September 13, 2019 (Poster). 

6. Wilder, B.* and A.M. Kinoshita, 2019. Predicting Post-Wildfire Peak Streamflow for 
Small Watersheds in Southern California. Floodplain Management Association (FMA) 
Conference, San Diego, California, August 2019 (Poster, Selected for the FMA 
Conference 2019 Student Scholarship). 

7. Wilder, B.* and A.M. Kinoshita, 2019. Post-fire Peak Flow Estimates in Southern 
California. SDSU Student Research Symposium (SRS), San Diego, CA, March (Poster). 

 
Science data developed for both research objectives were archived in the following repositories:  
 

1. Wilder, B. A., A. M. Kinoshita (2021). Monitoring Fire Severity and Ecohydrological 
Recovery for the 2018 Holy Fire in Southern California, HydroShare, 
https://doi.org/10.4211/hs.58ca489bc50f4158838394cb6f76e0e5  

2. Wilder, B. A., A. M. Kinoshita, J. T. Lancaster, P. H. Cafferata, D. B. Coe, B. J. 
Swanson, W. R. Short (2020). An analytical solution for rapidly predicting post-fire peak 
streamflows for small watersheds in southern California, HydroShare, 
https://doi.org/10.4211/hs.9e38375a19cf4355aac466ccd78e8282  

 
 

5. Key Findings and Implications for Policy and Future Research 
This work presented methods to improve rapid assessment and long-term prediction tools 

for ecohydrological processes such as streamflow and evapotranspiration (ET) in small 
watersheds in southern California affected by fire. We focused mainly on small watersheds (<50 
km2) that were contained within the Santa Ynez Mountains, San Gabriel Mountains, San 
Bernardino Mountains, Santa Ana Mountains, San Jacinto Mountains, and San Diego region. A 
machine learning (random forest) algorithm was built with 45 watershed parameters to predict 
post-fire peak streamflow and compared to RCS 1949 and observed streamflow (Wilder et al., 
2021). It was demonstrated that RCS 1949, a flood frequency model, overgeneralized watershed 
processes and did not adequately represent the spatial and temporal variability in systems 
affected by wildfire and extreme weather events. RCS 1949 often underpredicted peak 
streamflow without sediment bulking factors. A random forest flood forecasting model was 
developed and performed well. The improvement was expected, given the type of input data and 
difference in models, however, the modeling exercise demonstrated the importance and reliance 
on data availability of storm dependent parameters such as rainfall intensity and time after fire. 
The important parameters identified by the machine learning techniques were used create a 
simple regression to calculate post‐fire peak streamflow in small watersheds (less than 20 km2) 
in southern California during the first year after fire (R2 = 0.82; RMSE = 6.59 cms/km2), which 
can be used as an interim tool by post‐fire risk assessment teams.  

The first objective of this study used machine learning to develop flood forecasting 
models to improve prediction methods for floods immediately following fires in southern 
California. However, prediction accuracy can be improved with more sample collection to train 
the machine learning model. Future efforts using machine learning would be improved greatly if 
there are significant increases in high resolution rainfall intensity data, sub-hourly streamgaging, 
and sediment loading in channels. Additionally, designing a model using a classification-based 
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machine learning algorithm to predict the outcomes such as debris flow, mud flow, or flooding 
should be explored.  

Finally, to assess fire prone areas and post-fire recovery, we demonstrated the application 
of ECOSTRESS to characterize the 2018 Holy Fire in southern California. Using a pixel-by-pixel 
analysis it was demonstrated post-fire ETSSEBop had lower correlation to ETPT-JPL (R2 = 0.00 to 
0.04; slope = -0.10 to 0.12; sample size =103) than pre-fire (R2 = 0.47; slope = 0.36; sample size 
= 103). This highlights the higher spatial and temporal variability in post-fire ET caused by the 
large spatial heterogeneity of the burn conditions. Further, daily ETPT-JPL was reduced for the 
burned watershed compared to the control, agreeing with previous studies for semi-arid regions 
that highlight a marked decrease in post-fire ET. In the second year of recovery, areas with the 
high soil burn severity and areas consisting of montane hardwood species had the largest 
summation of annual post-fire ETPT-JPL. 

This work demonstrated that above-ground biomass and vegetation production played a 
role in recovery of hydrologic processes following fires in southern California. We also showed 
the potential advantages of using higher spatial and temporal resolution products such as 
ECOSTRESS to improve vegetation assessments. Yet, more work is needed to identify areas of 
high-water stress and fuel build up before fire, as well as validating post-fire ET across diverse 
ecoregions. There is also the potential to incorporate ETPT-JPL measurements as a predictor in 
future machine learning models to improve monitoring of annual and seasonal flows during the 
recovery period. Future work may also look to incorporate ground-based stations, Unmanned 
Aerial Systems (UAS), or satellite-based products such as ETPT-JPL and others (NDVI, EVI, etc.) 
to improve prediction accuracy and scalability for worldwide applications.    
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Appendix C: Metadata 
Metadata is included in links provided within Section 4.3 of this final report. Data 

delivery differs from that provided in data management plan. We utilized HydroShare, a National 
Science Foundation funded hydrological database for research scientists, to archive our data. 
HydroShare can be readily accessed by the general science community. The HydroShare 
repositories are linked to the corresponding paper and published under the same name. The 
second paper and data, “Monitoring Fire Severity and Ecohydrological Recovery for the 2018 
Holy Fire in Southern California,” is in peer review. 
 
 


