Chapter 9: Climate Change and Wildlife in
the Northern Rockies Region

Kevin S. McKelvey and Polly C. Buotte

How Climate Affects Wildlife

Temperature and moisture affect organisms through their
operational environment and the thin boundary layer im-
mediately above their tissues, and these effects are measured
at short time scales. When a human (a mammal) wearing
a dark insulative layer walks outdoors on a cold but sunny
day, he or she feels warm because energy from the sun is
interacting with the dark clothing, creating a warm boundary
layer to which his or her body reacts. Conditions beyond
that thin boundary layer are physiologically irrelevant. Walk
into the shade, and suddenly one is cold because the warm
boundary layer has been replaced with one at the ambient
temperature of the air. This example demonstrates many
factors to consider when evaluating the degree to which a
change in climate will affect an organism. Climate is defined
as the long-term average of temperature, precipitation, and
wind velocity. “Long term,” when applied to climate, is a
relative term and can refer to periods of weeks to centuries.
In the context of climate models, results are generally re-
ported as averages across 30-year intervals, which for many
animal species represent multiple generations. Our ability to
infer the biological effects of projected long-term changes
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Figure 9.1—Visual summary of workshop discussions on
the influence of climate on wildlife populations in the
Northern Rockies Adaptation Partnership. Pathways
of climate influence (black) interact with population
characteristics (blue) to affect the future population status
(red). A given pathway affects multiple species, and
multiple pathways affect a given species.
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in temperature and precipitation relies both on our ability

to directly relate these multiyear averages to biological
responses, and the trophic distance between climate-induced
ecological change and its effects on specific biological
relationships.

As just noted, a human’s response to change in radi-
ant energy is fast, measured in seconds to minutes, so
its relation to 30-year average temperature is obscure.
Climate changes the frequency of weather events, which
in turn change the frequency of nearly instantaneous shifts
in boundary layer conditions around one’s body. In ag-
gregate, these changes in frequency lead to conditions that
an individual either can navigate and tolerate—or cannot.
This is further complicated for endotherms (warm-blooded
animals), which maintain a constant body temperature. Cold
or excessive heat affects endotherms by requiring them
to burn more calories to maintain the required core tem-
perature. Thus, endotherms can function in a wide variety
of environmental conditions if they have enough food to
supply the necessary energy. Fish, reptiles, and amphibians
are ectotherms (cold-blooded organisms), which react to the
cold not by feeling cold and metabolizing energy to main-
tain core temperature, but by having their metabolism slow
until they are torpid.

Many of the species described here occupy terrestrial
habitats. Terrestrial organisms can manipulate their opera-
tional environment in a myriad of ways, choosing to stand in
the sun or shade, moving uphill or down, changing aspect,
or seeking cooler or warmer environments by digging into
a burrow in the ground or under the snow. Endothermic
animals can change the thickness of the boundary layer by
modifying their hair or feathers, both seasonally and on a
short-term basis, thus responding to variable thermal condi-
tions while minimizing energy expenditures. The ability of
terrestrial organisms to manipulate their operational environ-
ment contrasts with aquatic organisms, which have a harder
time avoiding adverse temperatures because water is an
excellent conductor of heat. In addition, aquatic ectotherms
have no way to avoid overheating when water temperatures
rise, so it is more straightforward to evaluate the effects of
climate change for fish with known warm-water limits than it
is for terrestrial endotherms (see Chapter 5).

Terrestrial endotherms are more likely to experience ef-
fects associated with changes in precipitation amounts and
types than effects associated with changes in temperature.
These species have less flexibility in dealing with changes
in precipitation patterns than with changes in temperature
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Figure 9.2—Canada lynx (a) have snow-specific adaptations (oversized feet, long legs, and a thin, light skeleton), and snowshoe
hares (b) dominate their diets. Snowshoe hares undergo seasonal pelage changes from brown to white, and the effectiveness
of this strategy depends on synchrony with snow cover. A mismatch between the hare’s fur color and its environment would
make it more vulnerable to predation by lynx (photo (a): U.S. Fish and Wildlife Service; (b) photo: L. Scott Mills, used with
permission).

because water produces physical features that serve as habi-
tat for which they are specifically adapted. In the Northern
Rockies region, and in other areas with cold winters, snow
provides physical habitat for which a number of organisms
have specific adaptations. An obvious adaptation is seasonal
color change in pelage: being white in a snowy landscape
enhances the likelihood of escaping detection if the animal
is prey, and approaching prey if the animal is a predator.
Therefore, white pelage in winter confers specific fitness
advantages if pelage change is properly timed to coincide
with snow cover. But it is a disadvantage if mistimed (see
discussion of snowshoe hare [Lepus americanus] later in
this chapter) (fig. 9.2). Specific morphological features such
as oversized feet, long legs, and light bone structures also
provide benefits in snow-covered landscapes but may be
disadvantageous in environments without snow.

Deep snow provides a relatively warm, stable environ-
ment at the interface between snow and soil; soils in areas
characterized by deep snow generally remain above freezing
throughout the winter (Edwards et al. 2007), and the sub-
nivean environment (beneath the snow surface) is used by
many organisms to den or feed. For organisms that depend
on a stable subnivean environment or that have specific
phenological adaptations to snow, reduced snowpack caused
by a shift in precipitation from snow to rain represents a
loss of critical habitat (see later discussion of American pika
[Ochotona princeps]). Similarly, water bodies are the physi-
cal habitats for a wide variety of animals, providing sources
of prey, temperature control, and safety from predation. In
addition, open or flowing water can provide important mi-
croclimates. For example, pikas can be found in what appear
to be hot, dry environments if water flow beneath the talus
produces cool microsites (Millar and Westfall 2010a).

Physical features associated with snow and water inte-
grate across longer time periods and are therefore closely
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associated with projected climate. For example, depth of
snowpack integrates seasonal moisture and temperature.
Seeps, springs, bogs, and persistent streams dependent on
continuous sources of groundwater can integrate longer cli-
matic periods. In some areas, water features are dependent
on glaciers, which integrate seasonal weather and long-term
climate. Therefore, areas with these features and the species
that depend on them are vulnerable to climate change, react-
ing at time scales reasonably consistent with the temporal
projections of global climate models (GCM) and providing
opportunities to project effects on habitats and species.

As noted earlier, terrestrial endotherms have many op-
tions for controlling both their operational environments and
the physiological effects of these environments. Terrestrial
plants are stationary ectotherms and, lacking the behavioral
and physiological plasticity of endothermic animals, are
more directly affected by climate changes (see Chapter 6).
Therefore, climate effects on wildlife will frequently occur
due to changes in plant assemblages that constitute wildlife
habitat. For predators, these effects may be either direct
(e.g., changes in the number and locations of vegetation
boundaries used by predators) or indirect through changes
in prey densities or prey availability to predators. Climate-
induced changes in trophic structures are expected to be
common, complex, and interactive, but are at least one step
removed from climate (e.g., Post et al. 1999).

The effects of habitat changes on a specific animal are
difficult to project and require specific understanding of the
functional roles that ecological attributes play in the life
history of the animal, and the consequences associated with
alternative life history strategies. These types of data are
often lacking, and although current behaviors can be stud-
ied, they may not be informative relative to climate change
effects, and responses may be novel and unanticipated. For
example, polar bears (Ursus maritimus) are historically
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adapted to pack-ice hunting for seals, but with recent reduc-
tions in pack ice, they have in some areas shifted to feeding
on the eggs of snow geese (Chen caerulescens) (Rockwell
and Gormezano 2009), whose populations have erupted
because of their ability to feed in agricultural fields (Fox et
al. 2005).

In addition to changes in vegetation and prey, trophic
effects include the presence and abundance of disease and
parasitic organisms. For example, for greater sage-grouse
(Centrocercus urophasianus), the potential spread of
West Nile virus (Flavivirus spp.) associated with climate
change may increase stress in grouse populations (Schrag
et al. 2011), but the effect is difficult to project. For many
organisms, current ranges are often strongly limited by hu-
man activities. For example, greater sage-grouse range is
limited by conversion of native sagebrush (4Artemisia spp.)
habitat to agricultural uses (Connelly et al. 2004; Miller and
Eddleman 2001).

Last, climate change is likely to alter the nature and loca-
tion of human activities that affect wildlife. In the western
United States, changes in water availability and the amounts
required for irrigation can be expected to have profound
effects on human activity and settlement patterns (Barnett et
al. 2005). In addition, societal effects associated with local
changes will occur within the context of societal changes
across much larger spatial domains. Changes in technology,
standards of living, infrastructure, laws, and the relative im-
pacts of climate changes in other areas, will all affect local
human activities.

In summary, the ways that climate change affects en-
dothermic terrestrial species are likely to be complex and
difficult to project. In addition to the uncertainty of future
climate itself (see Chapter 3), effects on most species will
be indirect through proxies such as ecological disturbance,
habitat structure, prey availability, disease dynamics, and
shifts in human activities.

The Importance of Community
in Defining Habitat

Our understanding of wildlife ecology, particularly at
broad spatial scales, is generally limited to the correlation of
occurrence patterns to landscape features rather than direct
studies of those factors that limit species distributions. In
some cases, patterns of occurrence are clear, consistent,
and highly correlated with climate (see later discussion on
wolverine [Gulo gulo]), but the causal relationships remain
obscure. For instance, many passerine birds nest only in
specific habitats; an example is Brewer’s sparrow (Spizella
breweri) (see later discussion), which is obligate to sage-
brush. Although the pattern is clear and invariant, the nature
of the obligate links to sagebrush is unknown. Species such
as ruffed grouse (Bonasa umbellus) (see later discussion)
clearly have northern distributions, but the factors that
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define the southern limits of their current distributions are
not well understood (Lowe et al. 2010).

This lack of causal understanding may be unimportant
for current management of these species because manage-
ment takes place only in areas where the species currently
occurs or where it occurred in the recent historical past.
Based on observed patterns of use and distribution, enough
information exists to identify and manage current habitat.
However, it cannot be assumed that measured correlations
will persist in an altered climate. We typically characterize
habitat elements within the context of assemblages of most-
ly unmeasured plants and animals. For example, assume that
an organism’s occurrence is strongly correlated with mature
Douglas-fir (Pseudotsuga menziesii) forests. These forests
contain other tree and understory species, animal com-
munities, and successional trajectories (e.g., habitat types;
Daubenmire [1952]). However, Douglas-fir projected onto a
future landscape may be associated with different plant and
animal communities. Due to the correlational nature of most
of our habitat knowledge, it is difficult to know which of
these community members are critical to habitat quality for
a target species and thus the habitat quality of novel species
assemblages.

In addition, factors identified as important are restricted
to those that currently limit behavior. Therefore, in corre-
lation-based habitat relationships, changes in non-limiting
but essential factors will not produce strong correlations
with behaviors. For example, distance to water may be a
strong habitat correlate in desert environments but may not
be correlated with habitat quality in a rainforest. Water may
be no less important in the rainforest, but it is currently not
limiting. As climate change alters biophysical attributes
of landscapes, limiting factors and definitions of what
constitutes habitat may change. Water availability might
become the most critical habitat attribute in a previously wet
environment that has become dry. For the most part, these
important but latent habitat attributes will remain unknown
until exposed by changes in climate.

In addition to potentially changing vegetation communi-
ties and limiting factors, the effects of climate on future
habitats are further complicated by altered disturbance
regimes. Regeneration, growth, and disturbance pat-
terns collectively create landscapes that provide habitats.
Changing disturbance dynamics (see Chapter 8) alter the
characteristics of landscape mosaics and fundamentally
alter habitats. As climate change causes shifts in plant and
animal distributions, a temporal mismatch between decrease
of current habitat and increase of new habitat may occur,

a mismatch that will be exacerbated by increased levels

of disturbance. Wildfire can destroy current habitat in a

day, but generation of new habitat may require centuries,
depending on the time necessary to create critical elements
through regeneration, growth, and succession. The fisher
provides an example of these uncertainties. In Idaho and
Montana, fishers are currently limited to mature forests in
the Inland Maritime climatic zone. However, GCMs indicate
that this zone will move to the east, and mature forest may
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take a century or more to grow in these new locations, creat-
ing uncertainty about the future range of fisher (see later
discussion).

Given the uncertainty associated with determining likely
trajectories of species and their habitats under climate
change, assessments of general vulnerability and projected
changes can best be viewed as hypotheses to be tested.
Therefore, it is desirable to develop proactive management
strategies that maintain valued species and landscape at-
tributes, including objectives such as creating resilience
to disturbance. Prioritizing which things are measured can
improve the connection between environmental change and
management. A monitoring program designed to test spe-
cific hypotheses associated with specific organisms (Nichols
and Williams 2006) can improve our understanding of rela-
tionships between climate change and landscapes, providing
data that inform science-based management.

Evaluating Sensitivity of Species
to Climate Change

Evaluating the potential effects of climate change on
animal species begins with determining which species are of
interest, collecting biological information about them, and
paying special attention to biological traits that might lead to
changes in distribution and abundance in a warmer climate
(e.g., Glick et al. 2011). Some species have received signifi-
cant attention, and this interest has generated peer-reviewed
articles that formally analyze the effects of climate change,
although this is relatively uncommon.

Foden et al. (2013) identify three dimensions associated
with climate change vulnerability—sensitivity, exposure,
and adaptive capacity—and apply a framework based on
assessing these attributes to nearly 17,000 species. Other
expert systems have been developed to evaluate the rela-
tive degree of climate sensitivity and vulnerability for
various species including the Climate Sensitivity Database
(Lawler and Case 2010) and NatureServe Climate Change
Vulnerability Index (NatureServe n.d.). These tools do not
seek to understand specific responses of animals to climate,
but rather to identify species that are likely to be vulnerable
based on current habitat associations, life history traits, and
distributions (Foden et al. 2013). Bagne et al. (2011) formal-
ized this process in the System for Assessing Vulnerability
of Species (SAVS). In SAVS, species are assessed based
on a large number of traits associated with habitat (seven
traits), physiology (six traits), phenology (four traits), and
biotic interactions (five traits). For each of these 22 traits, a
score of —1, 0, or 1 is assigned; positive scores indicate vul-
nerability, and negative scores indicate resilience. The raw
scores are multiplied by correction factors associated with
the number of traits in a category and possible scores across
traits to achieve a standardized score between —20 and 20
that indicates the relative vulnerability of the species.
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Formalizing traits that can lead to vulnerability provides
a framework for collecting biological data associated with
a species and for considering the effects of climate change.
However, existing expert systems cannot be used to infer
that sensitivities for disparate topics such as habitat and
phenology are proportionally important or that estimated
vulnerability has quantitative meaning (Bagne et al. 2011;
Case et al. 2015). Even if these issues were considered
unimportant, accurately identifying vulnerability for most
of the species evaluated here would not be possible given
current biological understanding. Because data on climate-
species relationships are so sparse, this assessment focuses
primarily on evaluation of each trait as it relates to the biol-
ogy of animal species.

Following are assessments for animal species identified
as high priority by Forest Service, U.S. Department of
Agriculture (USFS) Northern Region resource specialists,
and for additional species identified by participants in five
workshops convened by the Northern Rockies Adaptation
Partnership (see Chapter 1). Species were not necessarily
chosen based on their perceived level of vulnerability. In
many cases, species are associated with specific habitats
that were considered vulnerable; for example, some species
are associated with sagebrush communities, others with
snow depth and cover, and others with dry forests that have
large trees. These assessment summaries contain projec-
tions of climate change effects based on interpretation of
the pertinent literature. Level of detail differs considerably
among species and is mostly driven by the degree to which
the species have been evaluated in the context of climate
change. Species are listed in alphabetical order within each
taxonomic class.

Mammals

American Beaver

American beavers (Castor canadensis), like their
European counterpart (C. fiber), tend to spend most of the
winter in their lodges or swimming to retrieve food, so cli-
mate may be more influential during spring through autumn
than during winter (Jarema et al. 2009). However, body
weights of juvenile European beavers were lighter when
winters were colder (Campbell et al. 2013). The cost of ther-
modynamic regulation may be greater for juveniles because
they have higher surface area-to-volume ratios than adults
(on whom winter temperature had no effect) (Campbell et
al. 2013).

In Quebec, beaver density was highest in areas with the
highest maximum spring and summer temperatures (Jarema
et al. 2009). Conversely, European beavers in Norway
achieved heavier body weights when spring temperatures
were lower, and the rate of vegetation green-up was slower
(Campbell et al. 2013). This apparent contradiction may
have been caused by the timing and measurement of climate
and response variables. Although beavers create and require
ponds, survival and body weight in European beavers have
been linked to lower, and more consistent, precipitation
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Figure 9.3—Maintenance and
restoration of American beaver
populations are adaptation tactics
for maintaining water on the
landscape. Although beavers are
not particularly climate sensitive
themselves, the structures beavers
create and their effects on aquatic
habitats and floodplains may help
to ameliorate the effects of climatic
change on cold-water fish species
and other aquatic organisms (photo:
E. Himmel, National Park Service).

from April through September (Campbell et al. 2012, 2013).
Higher water levels during high precipitation years were
thought to lead to decreased riparian plant growth caused by
waterlogging (Campbell et al. 2012).

Climate can indirectly influence beavers through ef-
fects on vegetation. Climate change and climate-driven
changes in streamflow are likely to reduce the abundance of
dominant early-successional tree species in riparian habitats
(Perry et al. 2012), reducing food and building materials for
beaver. Beavers can be used as a management tool to buf-
fer riparian systems from drought (Lawler 2009) (fig. 9.3).
Beaver ponds increase the amount of open water (Hood and
Bayley 2008), and beaver management can be used as a sur-
rogate for amphibian conservation (Stevens et al. 2007).

American Pika

The American pika (Ochotona princeps) is a small
(5-8 ounces) lagomorph that often inhabits rocky alpine
areas in western North America (Smith and Weston 1990)
(fig. 9.4). The species has been extensively studied in the
Great Basin, where pika habitat typically occurs as small
islands near mountaintops. Relatively little study of pikas
had occurred in the Northern Rockies until recently, with
the exception of research on occupancy and abundance in
relation to microclimate, topography, and vegetation in the
Bighorn Mountains and Wind River Range (Wyoming)
(Yandow 2013). Studies are in process in the Bridger-
Teton National Forest and Greater Yellowstone Area (Erik
Beever, U.S. Geological Survey, Northern Rocky Mountain
Science Center, Bozeman, MT, August 2014, personal
communication).

Research suggests that pikas depend on moist, cool sum-
mer conditions and winter snow (Beever et al. 2011), and on
low water-balance stress and green vegetation (Beever et al.
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2013). Across paleontological time scales (Grayson 2005)
and during the 20™ century, pikas across the Great Basin
have reacted to increasing temperature by moving upslope
or becoming locally extirpated when the climate becomes
hot and dry (Beever et al. 2011). Results from field research
from 2012 through 2014 in the Great Basin indicate that lo-
cal extirpations and retractions are continuing (Erik Beever,
U.S. Geological Survey, Northern Rocky Mountain Science
Center, Bozeman, MT, August 2014, personal communica-
tion). Local changes in pika distribution have also been
recorded in Utah, the southern Sierra Nevada, and southern
and central Cascade Range (Beever et al. 2011 and refer-
ences therein).

In the Great Basin, pika extirpation (1994-2008) oc-
curred in microsites that were generally hotter in summer
(more frequent acute heat, and hotter average temperature
across the whole summer) and were more frequently very
cold in winter than in locations where pikas persisted. In
the latter case, warming reduced insulating snow, causing
near-ground temperatures to decrease (Beever et al. 2010).
Furthermore, density of pikas in surveys from 2003 through
2008 was best predicted by maximum snow water equiva-
lent and growing-season precipitation (Beever et al. 2013).
Some extirpations have occurred at sites with low annual
precipitation (Beever et al. 2011, 2013), reinforcing study
results in the southern Rocky Mountains (mostly Colorado),
where surveys indicated that 4 pika extirpations (among 69
total sites with historical records) occurred at the driest sites
(Erb et al. 2011).

Winter snowpack not only insulates pikas during cold
periods, but also provides water during the summer, when
plant senescence at drier sites occurs earlier in the year,
eliminating available metabolic water for pikas. Surveys,
mostly in the Sierra Nevada, found that pika extirpations
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Figure 9.4—The American pika is a small lagomorph that
collects grass and herbs throughout the summer as winter
food and remains active throughout the winter. It depends
on the relatively warm subnivean environment associated
with deep winter snowpack (photo: Will Thomson, U.S.
Geological Survey).

were associated with sites with higher maximum tem-
peratures and lower annual precipitation (Millar and
Westfall 2010b). Chronic stresses (average temperature
during summer, maximum snowpack, and growing-season
precipitation), acute temperature stresses (hot and cold),
and vegetation productivity apparently contributed to pika
declines in the Great Basin (Beever et al. 2010, 2011, 2013).

Individual mountain ranges are thought to act as discrete
areas without any pika migration between adjacent ranges
across valley bottoms (Castillo et al. 2014), although dis-
junct metapopulations of pikas separated by short distances
may exist. In a study of pika populations in ore dumps sepa-
rated by tens to hundreds of yards, individual populations
that were extirpated were recolonized, and abundance across
all ore piles remained constant (Smith 1980). This process
apparently occurs only at very short distances because
habitats isolated by more than 1,150 feet were generally
unoccupied. Connectivity of pika populations apparently de-
pends on context, with lower connectivity between sites that
occur in hotter, drier landscapes (Castillo et al. 2014; Henry
et al. 2012). Thus, recolonization may occur at distances
less than 0.5 mile and in areas where between-population
dispersal occurs within cool, moist landscapes, whereas
recolonization at longer distances is rare. In the Great Basin,
once pikas have been extirpated from a site, they have never
been detected in subsequent surveys across 21 years of con-
temporary research (Beever et al. 2011).

At the broadest spatial scales, there is genetic evidence
for historical isolation; pikas across the Intermountain West
separate into five distinct groups (Galbreath et al. 2010).

At smaller scales, inbreeding and high levels of genetic
structure exist between high and low elevation populations
in British Columbia, even when the populations are geo-
graphically proximal. Castillo et al. (2014) found that gene
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flow is restricted primarily by topographic relief, water, and
west-facing aspects, suggesting that physical restrictions
related to small body size and mode of locomotion, as well
as exposure to relatively high temperatures, limited pika
dispersal.

Studies in the Sierra Nevada (Millar and Westfall
2010a,b) and southern Rocky Mountains (Erb et al. 2011), at
sites in which pikas were common and not generally subject
to extirpation across most of the landscape, indicated that
physiological limits for this species had not been reached.
This will probably be the case for most pika populations
in the Northern Rockies region in the near term. Although
hot, dry climate may limit pika distributions, local moisture
sources, rock-ice features, aspect, and the physical structure
of talus fields may climatically buffer pikas from macro-
climatic stresses (Millar and Westfall 2010a). Existence
of pikas at Lava Beds National Monument, Craters of
the Moon National Monument, and the Columbia River
Gorge—all of which have warm, dry climates—underscores
the importance of microclimate for species vulnerability
assessments, and indicates that microclimate and macro-
climate are decoupled in some locations (Rodhouse et al.
2010; Simpson 2009; Varner and Dearing 2014).

Because pikas are sensitive to high temperature, we ex-
pect that pika populations will respond to climate change in
the Northern Rockies region. However, site-specific factors
contribute to highly variable microclimates, so response to
climate change will vary considerably over space and time.
A large amount of data has been collected on this species
over the past decade, and it should be possible to develop
more-accurate projections of population response as moni-
toring data continue to accrue.

Canada Lynx

The Canada lynx (Lynx canadensis) is a mid-sized cat
with several specific adaptations that allow it to travel
across soft snow. The most obvious adaptation is oversized
feet: foot loading is 0.5 times that of the similar sized
bobcat (L. rufus) (Buskirk et al. 2000). Canada lynx prey
nearly obligately on snowshoe hares (fig. 9.2). Not only do
snowshoe hares constitute 33 to 100 percent of lynx diet
(Mowat et al. 2000), but a low proportion of hares in the
diet indicates scarcity of hares, not diet plasticity (Mowat et
al. 2000). Studies of lynx winter diet in the Clearwater River
watershed (western Montana) found 94 to 99 percent of the
diet consisted of snowshoe hares (Squires and Ruggiero
2007). Snowshoe hares are also specially adapted to snowy
environments. When compared to similar sized leporids,
they have oversized feet. They also exhibit seasonal pelage
change from brown to white. Because lynx and hares have a
close association and have specialized adaptations to allow
survival in snowy environments, climate relationships for
both species are explored in this section.

The Canada lynx is found exclusively in North America,
its distribution extending across the interior of Canada and
Alaska and northward into tundra vegetation. In the con-
terminous United States, both current and likely historical
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populations are located in the extreme northern portions

of this region: Maine, historically New York and New
Hampshire, Minnesota north of Lake Superior, western
Montana, and northern Washington (McKelvey et al. 2000).
A tiny population existed and may still exist in the Greater
Yellowstone Area. Periodically, in the years immediately
after major population eruptions in the north, lynx distri-
butions expand; lynx were found ephemerally in North
Dakota, and populations temporarily increased in Montana
(McKelvey et al. 2000). Bobcats and lynx were not well dif-
ferentiated in the fur market (Novak et al. 1987)—with large
bobcats often recorded as “lynx”—so trapping records are
typically untrustworthy (McKelvey et al. 2000). Recently,

a population was translocated to Colorado, and appears

to be persisting; after initial high mortality rates, annual
survival has exceeded 90 percent (Devineau et al. 2010).
However, the historical evidence for lynx in Colorado is
weak, with most of the verified records occurring in years
consistent with immigration from the north (McKelvey et
al. 2000). Hare densities in Colorado are generally less than
the threshold of 0.5 hare per acre (Ivan et al. 2014) thought
to be the minimum hare density associated with stable lynx
populations (Mowat et al. 2000).

When evaluating the potential distribution of lynx, it is
important to note that large populations of lynx are located
in the interior of the continent. Lynx are common in Alberta
and Saskatchewan, where more than 20,000 were trapped
per year in recent eruptions (Novak et al. 1987), but they
are and were rare along both the Atlantic and Pacific coasts.
Lynx are more common in areas with a northern continental
climate, probably because soft powdery snow is more com-
mon there.

Maintaining population connectivity is central to lynx
conservation. However, maintaining connectivity may
become increasingly difficult as southern populations of
boreal species become more isolated with climate change
(van Oort et al. 2011). This is of particular concern because
disturbance processes that include wildfire, insects, and dis-
ease make some boreal forests vulnerable to climate change
(Agee 2000; Carroll et al. 2004; Fishlin et al. 2007; Fleming
et al. 2002; Intergovernmental Panel on Climate Change
[TPCC] 2007a,b; Logan et al. 2003).

In the Northern Rockies region, lynx exist in only a
few areas: the Clearwater River watershed, Bob Marshall
Wilderness, and the northwestern corner of Montana. A few
lynx were known to inhabit the Greater Yellowstone Area
in 2000 (Squires and Laurion 2000), but their current status
is unknown. Dens are located in boulder fields and spruce-
fir forests with high horizontal cover and abundant coarse
woody debris. Eighty percent of dens are in mature forest
and 13 percent in mid-seral regenerating stands (Squires et
al. 2008). For winter foraging, lynx preferentially forage in
mature, multilayer spruce-fir forests composed of larger di-
ameter trees with high horizontal cover, abundant snowshoe
hares, and deep snow (Squires et al. 2010). During summer,
lynx occupy young forests with high horizontal cover,
abundant total shrubs, abundant small diameter trees, and
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dense spruce-fir saplings (Squires et al. 2010). Lynx select
home ranges with vegetative conditions consistent with
those identified for foraging and denning, primarily at mid-
elevations (Squires et al. 2013). Assuming that preferences
for movement between home ranges are similar to those
associated with moving within the home range, dispersal
pathways consist of areas with similar properties to those
used for foraging (Squires et al. 2013).

The range of snowshoe hare (Hall and Kelson 1959) is
more extensive than that of lynx, extending into the mid-
Sierra Nevada and areas such as the Olympic Peninsula,
where there are no records of lynx occurrence (McKelvey
et al. 2000). The more extensive hare distribution, which
includes areas with limited snow (e.g., the Pacific coast),
is probably caused by greater genetic differentiation for
snowshoe hares than for lynx. Across the continent, lynx ex-
ist in a single, largely panmictic (random mating) population
(Schwartz et al. 2004), whereas hares are subdivided into six
subspecies (Wilson and Reeder 2005).

Hares exhibit variation in timing of pelage change across
western North America, but variation is low in any specific
location, and timing appears to be genetically controlled
and linked to photoperiod (e.g., Hall and Kelson 1959;
Zimova et al. 2014). Timing of pelage change is critical
for hare survival, because mismatches—a white hare on a
dark background and vice versa—cause most hares to die
from predation (Hodges 2000) (fig. 9.2). Initiation of pel-
age change is apparently driven by photoperiod rather than
background color, so the ability of hares to shift the timing
of pelage change to match patterns of snow cover is limited
(Mills et al. 2013). Given projections of snow cover by 2100
(see chapters 3 and 4), current patterns of pelage change in
the Northern Rockies region will be mismatched with the
period of snow cover. Unless a significant change occurs
in the population genetics of hares, they will be the wrong
color for about 2 months per year (one month in spring, one
month in fall) in the region (Mills et al. 2013).

Both lynx and hares require specific amounts and dura-
tion of winter snow. An example of this for lynx occurs in
Minnesota, where current and historical populations are lim-
ited to the “arrowhead” north of Lake Superior (McKelvey
et al. 2000; Schwartz et al. 2004). This area is characterized
by lake-effect snow, and outside of it, bobcats dominate
and lynx are not found. Both lynx and hares require forests
with dense understory canopies. In western Montana, lynx
and hares use older spruce-fir forests. If climate change and
associated disturbance reduce the abundance of these forest
types, habitat loss could be significant, reducing populations
of lynx and hares.

Fisher

The fisher (Martes pennanti) is a mid-sized, forest-
dwelling mustelid. The range of the fisher covers much of
the boreal forest in Canada, a broad area of the northeastern
United States extending from the Lake States to Maine, and
a scattered distribution in the western United States. Males
and females are similar in appearance, but the males are
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larger. Males are 35 to 47 inches long and weigh 8 to 13
pounds; females are 30 to 37 inches long and weigh 4 to 6
pounds (Powell 1993).

Fishers are common in the eastern United States and
are often associated with urban environments, but they are
uncommon in the western United States and apparently
have very specific habitat associations. Although the current
distribution of fishers is reduced from the historical range,
populations have typically been disjunct. Genetic studies
have shown that fisher populations in California have been
historically isolated from those in Washington, and fishers in
the southern Sierra Nevada have been isolated from those in
the Klamath region (Tucker et al. 2012). Fishers in Montana
contain unique haplotypes (DNA variations that tend to be
inherited together) not found elsewhere (Schwartz 2007,
Vinkey et al. 2006) and therefore were apparently isolated
both from large populations in northern British Columbia
and from coastal populations in Washington. Common attri-
butes for resting sites across eight studies of western fishers
were steep slopes, cool microclimates, dense forest canopy
cover, high volume of logs, and prevalence of large trees
and snags (Aubry et al. 2013). Although these features are
important for managing fisher habitat, they do not necessar-
ily explain the fragmented historical distribution in the West
(Tucker et al. 2012).

Fishers have long been thought to have specific climatic
associations. Krohn et al. (1995) compared fisher and
marten (Martes americana) distributions in the Sierra
Nevada, and found that areas occupied predominantly by
marten were closely associated with forested areas with the
deepest snow (>9 inches per winter month), whereas areas
occupied predominantly by fishers were forested areas with
low monthly snowfall (<5 inches). There is direct evidence
that fishers avoid deep snowpack (Krohn et al. 1995, 2005;
Raine 1983) and that deep snow can limit fisher dispersal
(Carr et al. 2007). Fishers also avoid dry habitats (Jones and
Garton 1994; Schwartz et al. 2013).

Presence in warmer, wetter forests is apparently common
in distributions of fishers at both the macroscale and fine
scale in the western United States, although large popula-
tions in northern interior British Columbia and Alberta are
not associated with these specific climates. Therefore, defin-
ing fisher habitat in climatic terms and projecting future
habitat is more challenging than for animals with more obvi-
ous climatic associations (Copeland et al. 2010; McKelvey
et al. 2011).

In a recent modeling study of fisher habitat in an area
consistent with its distribution in the Northern Rockies,
Olson et al. (2014) built occurrence models for fisher popu-
lations in northern Idaho and western Montana that included
variables such as canopy cover, climatic variables such as
minimum winter temperature, and topographic variables
such as slope. They found that most of the variability in
the model was explained by mean annual precipitation (34
percent), topographic position index (29 percent), and mean
temperature of the coldest month (27 percent). Therefore,
fisher habitat was projected to be best in areas with high
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annual precipitation, low relief, and mid-range values for
mean temperature in the coldest month. Krohn et al. (1997)
and Olson et al. (2014) projected similar areas of fisher
habitat and in similar places.

Olson et al. (2014) used downscaled data from a single
GCM (Hadley Centre Coupled Model, version 3; Collins et
al. 2001) and two emissions scenarios (A2-high, B2-low;
IPCC 2007b), projecting habitat for 2030, 2060, and 2090.
At the macroscale, results for both scenarios are similar: In
the near term, habitat currently occupied by fishers might
improve, but by 2090, habitat in areas that are currently
occupied (primarily central Idaho) decline sharply, and
new habitat is created to the east in northwestern Montana.
The primary difference between the scenarios at this level
of detail is the rate at which changes occur. The change
is visibly apparent by 2060 in the A2 scenario, but not in
the B2 scenario. As habitat shifts, it becomes increasingly
fragmented, and the amount of usable habitat is strongly
affected by how acceptable minimum patch size is defined
(Olson et al. 2014).

Olson et al. (2014) bracketed the emissions scenarios,
providing some measure of the potential range of results,
but between-model variability exceeds variability between
emissions scenarios. In addition, the performance of specific
GCMs varies considerably at the regional scale (Mote and
Salathé 2010), and the Hadley family of GCMs is consid-
ered to be on the hot-dry side of climate projections for the
Northern Rockies region (Alder and Hostetler 2014). As
a result, details within the model can influence patterns of
projected habitat.

There are other uncertainties about the ability of habitat
components to track climate. Given that fishers are associ-
ated with mature forests, significant time lags may exist
between the loss of current habitat and formation of new
habitat in areas that currently are unsuitable. If large trees
cannot survive the shift in climate, mature forests may be-
come rare for many decades. In climatic zones suitable for
fishers, forests may be dominated by young trees and shrubs
whose suitability for fisher habitat is unknown. Therefore,
projections in Olson et al. (2014) are an optimistic view of
habitat availability under climate change, and it is uncertain
if fishers would disperse into new habitat should such
changes occur.

Moose

Unlike Canada lynx or snowshoe hares, not all species
with northern distributions have cold-weather related traits.
Some organisms with broad historical distributions are cur-
rently limited to northern distributions because of southern
extirpation, such as gray wolves (Canis lupus) and brown
bears (Ursus arctos). These species are not considered to
be strongly climate limited. Indirectly, cold climates lead
to low densities of human populations in boreal forests and
tundra, and interaction with large carnivores is therefore
minimal. Were climates to warm, and people to relocate into
these northern systems, this would obviously affect species
such as wolves and brown bears.
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For a second group of species, northern ranges are not
defined by human impacts, but direct and indirect climate
limits may not have been identified. Moose (4lces alces)
are an example of a well-studied animal that has a northern
distribution but whose dependence on boreal environments
is not immediately obvious. We suspect that other species
with northern distributions may exhibit similar constraints
that define the southern extents of their ranges.

A limited amount of climate change research has been
conducted on moose (Murray et al. 2006, 2012). Several fac-
tors have been identified as influencing the biogeographical
distribution of moose including food supply, climate, and
habitat. Based on metabolic research, moose are intolerant
of heat but well adapted to cold, and summer temperatures
may define their southerly distribution (Renecker and Hudson
1986). When winter temperatures were greater than 23 °F
or summer temperatures were greater than 57 °F, moose
showed an increase in metabolism and heart and respiration
rates (Renecker and Hudson 1986, 1990), reduced feed intake
(Belovsky and Jordan 1978; Renecker and Hudson 1986), and
reduced body weight (Renecker and Hudson 1986). When
ambient air temperatures exceeded 68 °F, moose resorted
to open-mouthed panting to regulate core body temperature
(Renecker and Hudson 1986). Heat stress was particularly
apparent in the spring when moose were still in their winter
coats (Schwartz and Renecker 1997).

However, moose may be able to avoid being exposed to
high midday summer temperatures. In Minnesota, Lenarz
et al. (2009) found that temperature was highly correlated
with moose survival, but winter temperature was more criti-
cal than summer heat. High temperatures in January were
inversely correlated with subsequent survival and explained
more than 78 percent of variability in spring, fall, and annu-
al survival. In northern Minnesota, moose populations were
not viable, largely because of disease- and parasite-related
mortality (Murray et al. 2006). In nearby southern Ontario,
however, moose populations were apparently viable with
favorable growth rates (Murray et al. 2012). Warming tem-
peratures favor white-tailed deer (Odocoileus virginianus)
expansion into moose range, and increased transmission
of deer parasites to moose (Lankester 2010). Given both
physiological and biological stressors, separating direct and
indirect climate effects is difficult (Murray et al. 2012).

Northern Bog Lemming

As the name implies, northern bog lemmings
(Synaptomys borealis) inhabit wet meadows, bogs, and
fens within several overstory habitat types (Foresman
2012). Generally these wetlands have extensive sphagnum
(Sphagnum spp.), willow (Salix spp.), or sedge components.
These mammals were likely to occupy places that retained
high water levels after the last glacial retreat (Foresman
2012). Given their dependence on wet habitats, it follows
that climate changes that decrease the amount of surface
water will probably have negative impacts on northern bog
lemmings. Management practices that maintain surface

USDA Forest Service RMRS-GTR-374. 2018

CLIMATE CHANGE AND WILDLIFE IN THE NORTHERN ROCKIES REGION

water may therefore be beneficial. However, documented
studies of climate and management effects are lacking.

Pronghorn

The pronghorn (4ntilocapra americana) is an ungulate
native to the prairies, shrublands, and deserts of the western
United States and occupying a broad range of climatic
conditions from southern Canada (Dirschl 1963) to Mexico
(Buechner 1950). Although pronghorns occupy a broad cli-
matic region and their diet is generalized, they are prone to
epizootic diseases, notably bluetongue (a viral disease trans-
mitted by midges [Culicoides spp.]) (Thorne et al. 1988).
Bluetongue is thought to be cold-weather limited, and recent
extensions of bluetongue in Europe have been attributed to
climatic warming (Purse et al. 2005). Given their current
range and food habits, the emergence of new disease threats
caused by a warmer climate probably poses the greatest risk
to pronghorns.

Pygmy Rabbit

The pygmy rabbit (Brachylagus idahoensis) is one of
the smallest leporids in the world and is endemic to big
sagebrush (Artemisia tridentata) (Katzner and Parker 1997),
which is critical for food and cover. In southeastern Idaho,
areas selected by pygmy rabbits had a significantly higher
woody cover and height than other areas, with lower quanti-
ties of grasses and higher quantities of forbs. Sagebrush was
eaten throughout the year, composing 51 percent of the diet
in summer and 99 percent in winter (Green and Flinders
1980). These findings are similar to those reported for south-
ern Wyoming (Katzner and Parker 1997) and Utah (Edgel
et al. 2014). In addition, areas used by pygmy rabbits ac-
cumulate more snow than unused areas, and rabbits use the
subnivean environment to reach food and avoid predators
(Katzner and Parker 1997). The presence of significant snow
for thermal protection may be important for winter survival,
because of small body size, lack of metabolic torpor, and
lack of food caching (Katzner and Parker 1997).

Structural characteristics of sagebrush are considered
more important than food availability for pygmy rabbits
(Green and Flinders 1980; Katzner and Parker 1997).
Although large, dense sagebrush would be expected to
be associated with older stands, Edgel et al. (2014) found
no difference in age between occupied and unoccupied
sites; structure was important, but age was not. As a result,
processes that reduce the size and density of sagebrush are
likely to have negative effects on pygmy rabbits, and pro-
cesses that fragment sagebrush stands may decrease habitat
quality. For example, Pierce et al. (2011) found that bur-
rows, observed rabbits, and fecal pellets decrease in density
with proximity (<300 feet) to edges.

Paleoecological studies show that both sagebrush and
pygmy rabbits are sensitive to climate change. Both species
decreased in the mid-Holocene, characterized in the Great
Basin by extreme aridity (Grayson 2000). Big sagebrush
is sensitive to fire, and 100 percent mortality and complete
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stand replacement after burning are common (Davies et

al. 2011; see Chapter 7). In addition, big sagebrush cannot
resprout from the root crown after a fire, so recruitment of
sagebrush relies on wind dispersal of seeds from adjacent
seed sources and on composition of the seedbank in the soil
(Allen et al. 2008; Ziegenhagen and Miller 2009). Mountain
big sagebrush (4. tridentata ssp. vaseyana) required 13 to
27 years after spring prescribed burning to return to condi-
tions suitable for pygmy rabbit habitat (Woods et al. 2013).
In areas where fire has been suppressed for many decades,
sagebrush habitat can be displaced by conifer incursion
(Miller and Rose 1999).

Pygmy rabbits are likely to be sensitive to climate change
for several reasons. First, they depend on a single species
(big sagebrush) and habitat condition (tall, dense stands).
Climatic variability has affected sagebrush communities and
pygmy rabbits in the past (Grayson 2000), and this could
happen again in the future. Second, pygmy rabbit habitat
is sensitive to altered disturbance. Increased fire frequency
and area burned are projected as the climate continues to
warm (see chapters 6, 7, and 8). Finally, changes in winter
snow depth could affect overwinter survival by altering the
protection provided by the subnivean environment.

Townsend'’s Big-Eared Bat

Climate change can affect foraging ability, drinking wa-
ter availability, and timing of hibernation in bats (Sherwin
et al. 2013). Townsend’s big-eared bats (Corynorhinus
townsendii) generally require cavern-like structures for
diurnal, maternal, and hibernation roosting, although they
also use large tree cavities, buildings, and bridges (Gruver
and Keinath 2003). They forage for insects along riparian
and forest edge habitats (Fellers and Pierson 2002). Their
distribution is apparently limited by the availability of suit-
able roosting sites, as western populations have declined
(O’Shea and Vaughan 1999) coincidental with mine closings
(Gruver and Keinath 2003). Townsend’s big-eared bats are
not able to produce highly concentrated urine (Geluso 1978)
and therefore require daily access to water sources for drink-
ing (Gruver and Keinath 2003). Constructed water holes and
mining ponds may serve as water sources (Geluso 1978);
metal contaminants in the latter may cause some bat mortal-
ity (Pierson et al. 1999).

Bioaccumulation of pesticides in fat tissue apparently
is one cause of declines in Townsend’s big-eared bat
populations (Clark 1988). Human activities that reduce
moth populations can also negatively affect bat populations
because moths are a primary food source of Townsend’s big-
eared bats (Burford and Lacki 1998; Whitaker et al. 1977).
Bats may be especially sensitive to human disturbance dur-
ing hibernation (Thomas 1995).

In Colorado, the reproductive success of bats of the
Mpyotis genus declined during warmer and drier conditions,
which are projected to be typical of future climatic condi-
tions (Adams 2010). However, in other instances, warmer
spring temperatures have led to earlier births, which pro-
motes juvenile survival (Lucan et al. 2013). Higher summer
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precipitation may reduce reproductive success (Lucan et al.
2013). Future warming may also reduce the effectiveness of
some bat echolocation calls (Luo et al. 2014).

Ungulates (Elk, Mule Deer, White-tailed Deer)

Rocky Mountain elk (Cervus canadensis), Rocky
Mountain mule deer (Odocoileus hemionus hemionus), and
white-tailed deer (O. virginianus) provide the core of big
game hunting in the Northern Rockies region. All three have
very broad ranges in North America. The current range for
elk, which includes most of the Rocky Mountain West, also
includes areas in the eastern and southwestern United States
that were historically occupied by other subspecies. Rocky
Mountain mule deer extend from the Yukon to northern
Arizona. White-tailed deer extend across most of North
America and into northern South America and include 38
recognized subspecies (De la Rosa-Reyna 2012).

Based on their broad ranges, it is clear that all three
species exhibit a high degree of flexibility toward habitat.
Habitat use by elk in forested areas is associated with edges
(Grover and Thompson 1986; Irwin and Peek 1983; Thomas
et al. 1979, 1988) in which areas containing high-quality
forage and areas with forest cover are in proximity. In open
habitats, they select areas of high vegetative diversity with
intermixed patches of shrubs and grasslands (Sawyer et al.
2007). Both patterns of habitat use are apparently maxi-
mized by a disturbance regime with spatial heterogeneity at
relatively fine scales.

A study of Rocky Mountain mule deer found that home
range size increased in areas with few large patches and
was smallest in fine-grained vegetation mosaics (Kie et al.
2002). Mule deer depend on disturbance to create forage
(e.g., Bergman et al. 2014), but the size and juxtaposition of
patches are important. Fine-grained disturbance mosaics are
apparently optimal for white-tailed deer, especially in areas
where thermal cover is important. In the Northern Rockies
region, thermal cover prevents heat loss during winter,
although in warmer climates, thermal cover reduces daytime
heating. In Texas, male white-tailed deer chose areas with
high cover and poor foraging opportunities during the mid-
day, but chose areas with higher forage quantities during
crepuscular and nocturnal periods (Wiemers et al. 2014).

Ungulates generally respond positively to disturbance
(fig. 9.5), but the types of disturbance and the resulting
landscape condition and species composition are equally
important. Just as wildfire intensity affects patchiness in the
postfire landscape, it also affects which plant species are
likely to revegetate burned areas. For example, Emery et al.
(2011) found that at lower temperatures several native plant
species exhibited enhanced germination, whereas nonnative
plant species did not. Vegetation growth after disturbance
is important where nonnative species are common. For
example, Bergman et al. (2014) found that treatments that
removed trees and controlled weeds produced better mule
deer habitat than treatments that removed only trees.

Climate change is expected to alter fire regimes, but for
ungulates the exact nature of those changes will be critical.
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For example, in the Greater Yellowstone Area subregion,
wildfires are infrequent, large, and intense. If climate change
causes more frequent fires (Westerling et al. 2011), then the
landscape will be patchier compared to the current condition,
and the distribution and abundance of forest species could
change. In the short term, novel fire-climate-vegetation
relationships can be expected. In the long term, the effects of
altered vegetation on ungulate populations are uncertain, but
it is unlikely that there will be highly negative consequences.

Wolverine

The wolverine (Gulo gulo) is the largest mustelid, oc-
curring throughout the Arctic, as well as subarctic areas and
boreal forests of western North America and Eurasia. At the
southern extent of its distribution in North America, popula-
tions occupy peninsular extensions of temperate montane
forests. Monitoring programs in Fennoscandia (Flagstad et
al. 2004) and surveys in Canada (Lofroth and Krebs 2007)
inform our understanding of wolverine occurrence in those
regions, but the limits of wolverine distribution in other por-
tions of its range are less understood.

Wolverines are often considered to be generalists with
respect to habitat, and their occurrence has been associated
with great distance from human development (Banci 1994;
May et al. 2006; Rowland et al. 2003). However, unlike
brown bear and gray wolf, whose northern distributions are
the result of recent human hunting and habitat alteration,
there is no historical evidence for wolverine presence in areas
not characterized by arctic or boreal conditions (Aubry et al.
2007). Fossil evidence is consistent with this understanding
(Alvarez-Lao and Garcia 2010), and wolverines apparently
have always been associated with cold northern climates.

Wolverines den in snow, and deep snow throughout
the denning period is thought to be essential (Magoun and
Copeland 1998). The strong, perhaps obligate, relationship
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Figure 9.5—Ungulates generally
respond favorably to
wildfires that create patchy
habitat, especially if forage
availability improves, as
shown in this photo of an
elk browsing adjacent to a
recently burned lodgepole
pine forest (photo: Jeff Henry,
National Park Service).

between wolverine den selection and deep snow in the late
spring has been reinforced by recent study results (Copeland
et al. 2010; Dawson et al. 2010; Inman et al. 2012). A proxy
for spring snowpack (areas where snow persisted through
mid-May) effectively describes den site selection, current
range limits, and year-round habitat use at the southern pe-
riphery of the wolverine range (Copeland et al. 2010). These
areas are associated with successful dispersal (Schwartz et
al. 2009) and historical range (Aubry et al. 2007). Although
not all biological aspects of this association are understood,
its universal nature in both space and time indicate that snow
persistence will be associated with future distributions as
well. The association applies to populations in Alaska, Idaho,
and Scandinavia, and it describes both historical and con-
temporary distributions. Wolverines apparently travel within
these areas when dispersing and strongly minimize travel
through low elevation habitat, so we can project both current
and future travel routes based on altered snowpack.
McKelvey et al. (2011) modeled future spring snowpack
within the Columbia, Upper Missouri, and Colorado River
basins, and projected changes in habitat and connectivity as-
sociated with future landscapes based on existing wolverine
habitat relationships (Copeland et al. 2010) and dispersal
preferences (Schwartz et al. 2009). A projection derived
from an ensemble mean of 10 GCMs under an intermediate
emissions scenario (A1B) (Mote and Salathé 2010) was used
to produce climate projections (Elsner et al. 2010; Littell et
al. 2011). Historical data across the area were reconstructed
following methods in Hamlet and Lettenmaier (2005), and
changes from historical patterns were modeled by using the
“delta” method of downscaling, resulting in regionally aver-
aged temperature and precipitation change for 2030-2059
and 2070-2099. Downscaled climate data were used as inputs
to the Variable Infiltration Capacity (VIC) model (Hamlet
and Lettenmaier 2005; Liang et al. 1994), which was used to
project snowpack. Historical modeled snowpack depth was
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fit to most closely match the persistent snow cover data from
Copeland et al. (2010), and this fit was then used to identify
areas of future habitat for wolverines.

In the Columbia and Upper Missouri River basins, where
most of the Northern Rockies region is located, snowpack
projection indicated a loss of 35 and 24 percent, respectively,
for spring snow by the mid-21st century, and 66 and 51
percent, respectively, by the end of the century. Central
Idaho was projected to lose nearly all snow by the end of the
century, whereas northern Montana, the southern Bitterroot
Mountains, and the Greater Yellowstone Area retained sig-
nificant spring snow (McKelvey et al. 2011). The ensemble
mean model output was similar to results associated with the
Parallel Climate Model (a cool extreme; U.S. Department of
Energy and National Science Foundation 2004), but at the
warm extreme, little spring snow was retained at the end of
the century. A connectivity model (Schwartz et al. 2009) in
conjunction with ensemble climate model projections indi-
cated that all remaining habitat would be genetically isolated
by the end of the 215 century (McKelvey et al. 2011).

The threshold between rain and snow causes estimates
of snowpack loss to differ greatly between GCMs because
timing of moisture and the temperature when it occurs affect
model performance. Cool models (e.g., Goddard Institute for
Space Studies model E; Schmidt et al. 2006) indicate increas-
es in January snowpack at high elevation (e.g., Yellowstone
Plateau, Colorado) through the mid-21% century, whereas
warmer models (e.g., Model for Interdisciplinary Research on
Climate; Watanabe et al. 2011) show large losses in snowpack
across all regions (Alder and Hostetler 2014). All models,
including the coolest and wettest, indicate a continuing reduc-
tion in spring snow, a pattern that has been ongoing since at
least the 1950s (Mote et al. 2005).

Birds

Brewer’s Sparrow

Brewer’s sparrow (Spizella breweri) is apparently a
sagebrush obligate during the nesting period when nest
occupancy is positively related to tall, dense stands of sage-
brush (Petersen and Best 1985; Reynolds 1981) (fig. 9.6).

In areas where other sagebrush-obligate species exist (e.g.,
sage thrasher [Oreoscoptes montanus)), these sparrows may
compete for nest locations (Reynolds 1981). In many areas,
however, Brewer’s sparrow is the most abundant bird species
(Norvell et al. 2014). Some consider the closely related tim-
berline sparrow (S. breweri taverneri) to be a separate species
(i.e., S. taverneri) or subspecies but, in any case, no genetic
mixing occurs between the alpine and sagebrush variants
(Klicka et al. 1999).

Reasons for the obligate relationship of Brewer’s spar-
row with sagebrush are obscure. Although this relationship
appears to be robust, especially patterns of nest occupancy
(Petersen and Best 1985), evidence for why Brewer’s spar-
row nests in sagebrush rather than in other brush species is
lacking. Therefore, we rely on correlative associations to
project climate change effects and cannot speculate as to the
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flexibility of this species to shift to alternative shrub species
should sagebrush become scarce.

Brewer’s sparrow populations appear to be reasonably
stable range-wide, although they have been in decline in
some areas in Colorado (USGS 2013). Although Brewer’s
sparrow selects for areas with tall, dense sagebrush, sparrow
abundance was unaffected by treatments designed to modify
sagebrush cover and improve habitat for greater sage-grouse
(Norvell et al. 2014). Similarly, a study of the effects of
(nonnative) smooth brome (Bromus inermis) found that
nest success was higher in areas with brome establishment
(Ruehmann et al. 2011). In general, the effects of climate
change on Brewer’s sparrow will probably depend to a great
degree on changes in the distribution, abundance, composi-
tion, and structure of sagebrush communities. Increased
wildfire is likely to reduce the distribution, abundance, and
age of sagebrush stands in a warmer climate. Within sage-
brush communities, Brewer’s sparrows do exhibit flexibility
in response to nest predation, shifting locations of sequential
nests in response to previous predation (Chalfoun and Martin
2010).

Flammulated Owl/

The flammulated owl (Otus flammeolus) is a nocturnal
owl, approximately 6 inches long with a 14-inch wingspan.
It is migratory but breeds in montane areas across much
of western North America, ranging from southern British
Columbia to central Mexico (Ridgely et al. 2003). It is a cav-
ity nester, associated with mature forests with large diameter

Figure 9.6—Because climate change is expected to reduce
the extent of mature sagebrush through increased wildfire,
sagebrush-obligate species such as Brewer’s sparrow
(shown here) and greater sage-grouse may have less nesting
habitat in the future (photo: Tom Koerner, U.S. Fish and
Wildlife Service).
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trees. It is also associated with open forests, but does not
appear to be specific to any particular tree species. In New
Mexico, it is found in pinyon pine (Pinus edulis) (McCallum
and Gehlbach 1988), ponderosa pine (P. ponderosa) (Bull et
al. 1990; Linkhart et al. 1998), and Douglas-fir (Powers et al.
1996; Scholer et al. 2014) forest. In the Sierra Nevada, it has
been associated with (from low to high elevation) black oak
(Quercus kelloggii), mixed-conifer, Jeffrey pine (P, jeffreyi),
white fir (4bies concolor), and red fir (4. magnifica) forest
(Stanek et al. 2011).

Flammulated owls are thought to be obligate secondary
cavity nesters, although it has been anecdotally observed to
nest in the ground (Smucker and Marks 2013). Flammulated
owls feed almost exclusively on insects, primarily
Lepidoptera, which they gather from trees, on the ground,
or in flight (Linkhart et al. 1998). During the nesting period,
males are single-trip, central-place foragers, so the energetics
of prey selection are important; distance traveled and energy
content of prey differ by forest type. Little information is
available on the diet of flammulated owls and their relation-
ships to forest habitat. Interactions with other owl species are
apparently minimal (Hayward and Garton 1988).

The extensive latitudinal range of flammulated owls, lack
of specific forest associations, and generalized insect diet
indicate that straightforward links to specific climatic regimes
are unlikely. If climate change is to affect flammulated owls,
then it will most likely be through disturbance processes that
remove large diameter trees. Shifts to denser forest structure
would be problematic for this species, but there is little evi-
dence that this would occur, because drought and wildfire are
projected to increase throughout the Northern Rockies (Alder
and Hostetler 2014). As with other long-lived owl species
(Linkhart and Reynolds 2004), flammulated owl populations
will be very sensitive to adult survival (Noon and Biles 1990).

Greater Sage-Grouse

Greater sage-grouse (Centrocercus urophasianus) is the
largest grouse in North America (Mezquida et al. 2006). It is
considered an obligate with sagebrush (Miller and Eddleman
2001). Its distribution is currently about half of its presettle-
ment range (Schroeder et al. 2004), and many populations
have been steadily declining in recent decades (Braun 1998;
Connelly and Braun 1997; Connelly et al. 2004). In some
areas, land conversion that eliminated sagebrush apparently
has caused the declines (Connelly et al. 2004; Miller and
Eddleman 2001). Extirpation of sage-grouse is more likely in
areas with high human population densities, land conversion
to cropland, severe droughts (Aldridge et al. 2008), sagebrush
displacement by conifers, and corvid predation. It is also
more likely in areas with less than 25 percent sagebrush cover
near the edge of the historical range.

Declines in sage-grouse have also occurred in areas still
dominated by sagebrush (Miller and Eddleman 2001). In
addition to reduced sagebrush cover, declines have been at-
tributed to nonnative plants (Connelly et al. 2004; Knick et al.
2003; Wisdom et al. 2002), energy exploration and extraction
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(Braun et al. 2002; Doherty et al. 2008; Holloran et al. 2005;
Lyon and Anderson 2003; Walker et al. 2007a), grazing (Beck
and Mitchell 2000; Hayes and Holl 2003), altered fire regimes
(Connelly et al. 2000, 2004), and a warmer climate (Neilson
et al. 2005). In recent years, West Nile virus has also been
implicated (Naugle et al. 2004, 2005; Walker et al. 2007b).

Assessing the effects of climate change on this species
is challenging because so many factors potentially affect
sage-grouse population dynamics. Nevertheless, Schrag et
al. (2011) produced a detailed climate change assessment for
greater sage-grouse that evaluated changes in distribution
of sagebrush and transmission of West Nile virus. They first
built bioclimatic models for sagebrush distribution, then mod-
eled West Nile spread based on temperature thresholds. They
used six GCMs and one emissions scenario (A1B), and GCM
output was statistically downscaled to 7.5-mile pixels. Both
the envelope model and temperature thresholds were pro-
jected to 2030 based on the downscaled GCM output. Results
varied greatly across models, but it was concluded that the
cumulative effects of projected climate change on both sage-
brush and West Nile virus transmission would reduce suitable
sage-grouse habitat in the Northern Rockies and northern
Great Plains (Schrag et al. 2011). Sage-grouse require large
areas of mature sagebrush, so future increases in wildfires are
expected to significantly reduce habitat.

Creutzburg et al. (2015) evaluated the likely trajectory
of greater sage-grouse habitat in southeastern Oregon. They
simulated the effects of climate change, disturbance, and
cheatgrass (Bromus tectorum) invasion by coupling a linked
dynamic global vegetation model, climate envelope model,
and state-and-transition simulation model, based on three
climate models chosen to cover a range of possible futures. In
the near term, loss of sagebrush from wildfire and cheatgrass
invasion leads to habitat deterioration. In all three climate
projections, however, native shrub-steppe communities
increased circa 2070, leading to habitat improvement. In this
simulation, all projected climate futures had better long-range
prospects for sage-grouse than was simulated based on cur-
rent climate.

Harlequin Duck

Harlequin ducks (Histrionicus histrionicus) in the
Intermountain West breed and summer on fast-flowing
mountain streams and winter on rocky coastal areas
(Robertson and Goudie 2015). In Grand Teton National
Park, breeding pairs used streams with dense shrubs along
the banks (Wallen 1987). During summer they feed primar-
ily on larval insects on stream bottoms and in winter on a
variety of small food items including snails, small crabs,
barnacles, and fish roe (Robertson and Goudie 2015). They
are relatively rare in Montana, with a concentration in Upper
McDonald Creek in Glacier National Park (Reichel 1996).
Climate change may alter the timing, duration, and levels of
streamflows. In Glacier National Park, harlequin duck re-
productive success declined with higher and less predictable
streamflows (Hansen 2014).
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Mountain Quail

The mountain quail (Oreortyx pictus) is a small ground-
dwelling bird that occupies upland forest and woodland
habitats in the western United States and northern Mexico
(Brennan et al. 1987). In the Pacific Northwest, its range
extends into deep canyons such as Hells Canyon of the
Snake River (Pope and Crawford 2004), where populations
of the species have been declining. Population augmentation
through translocation is common. Population studies have fo-
cused on survival, but connections to climate-related change
are minimal. Stephenson et al. (2011) found that climate-
related variables were important to survival, with lower
survival being linked both to hot, dry conditions and to cold
winter weather. Seasonal movements to avoid snowpack led
to increased rates of movement, which were also important
predictors of survival.

Pygmy Nuthatch

The pygmy nuthatch (Sitta pygmaea), a bird about 4
inches long, is found throughout montane coniferous forests
in western North America and as far south as central Mexico
(MCcEllin 1979; Ridgely et al. 2003). It is a cavity nester,
often associated with ponderosa pine forests (McEllin
1979) but also found in other forest types such as quaking
aspen (Populus tremuloides) (Li and Martin 1991). Pygmy
nuthatches can exhibit a social structure of cooperative
breeding in which “helpers” aid breeding birds by feeding
the incubating female, feeding nestlings and fledglings, and
defending nesting territory (Sydeman et al. 1988).

Pygmy nuthatches nest in cavities in both live and dead
trees, as observed at a study site in Arizona (Li and Martin
1991), and population responses to disturbance are modest.
For example, Hurteau et al. (2008) found that population
densities across a variety of thinning and fuels treatments
at a study site in Arizona remained constant except in thin-
and-burn treatments, where densities increased by more than
500 percent. In a study of the interior western United States,
Saab et al. (2007) found that nuthatches showed a negative
response to fire the first year after wildfire, but a neutral
response in subsequent years. Due to their apparent neutral
response to disturbance, coupled with flexibility in habitat
and wide latitudinal range, it is difficult to project whether
they will respond positively or negatively to climate change.
Extirpation of the pygmy nuthatch due to climate change
appears unlikely, other than from the effects of land-use
conversion from forest to nonforest.

Ruffed Grouse

Ruffed grouse (Bonasa umbellus) are characterized by a
boreal distribution that includes peninsular extensions into
the Rocky Mountains and Appalachian Mountains (USGS
2014). Throughout much of their range, ruffed grouse oc-
cupy quaking aspen (Populus tremuloides) forest (Kubisiak
1985; Stauffer and Peterson 1985; Svoboda and Gullion
1972), which provides important food sources (Jakubas and
Gullion 1991). Although ruffed grouse exist in forests that
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contain no aspen (e.g., oak-dominated forest) (Haulton et al.
2003), they are mostly limited to aspen habitats in many ar-
eas of the West (e.g., Mehls et al. 2014). Ruffed grouse were
identified as a species of concern in the Northern Rockies in
the context of aspen-dominated forest, so we focus here on
the use of aspen by ruffed grouse.

In central Wisconsin, ruffed grouse densities were high-
est in young (<25 years) aspen stands (Kubisiak 1985).
Similarly, ruffed grouse preferred stand structures charac-
teristic of early successional stages in Idaho (Stauffer and
Peterson 1985) but also use aspen stands of all ages (Mehls
et al. 2014). Thus, optimal grouse habitat consists of aspen
forests with stands in a variety of age classes, including a
large component of young stands.

Aspen may be sensitive to heat and drought in some
locations (Anderegg et al. 2013; Huang and Anderegg
2011). Although higher temperatures are expected to cause
increased stress in aspen, differences in forest structure and
age affect the relationship between aspen mortality and
drought (Bell et al. 2014), and mortality can be reduced by
controlling stand densities and ages and limiting competi-
tion from conifers. If climate change causes decreased
extent of aspen in the Northern Rockies region, reduced
habitat would have detrimental effects on ruffed grouse
populations. However, significant options exist to mitigate
these changes through silviculture that favors aspen over
conifers and through active manipulation of stand densities
and ages.

Amphibians
Columbia Spotted Frog

The Columbia spotted frog (Rana luteiventris) breeds in
montane ponds throughout western North America (Green
et al. 1996, 1997) (fig. 9.7). Funk et al. (2008) built a
phylogeny for this species based on samples across western
North America. Populations separated into three distinct
clades; within the Northern Rockies region, all samples
were associated with the northern clade and were fairly
closely related. The effects of climate change on Columbia
spotted frogs are unclear. In Utah, the frog was more likely
to occur in persistent, shady ponds that maintained constant
temperatures (Welch and MacMahon 2005). In Yellowstone
National Park, pond desiccation led to sharp declines in frog
populations (McMenamina et al. 2008).Throughout their
range, populations in large stable water bodies were doing
well, whereas those in smaller more ephemeral ponds were
subject to rapid declines (Hossack et al. 2013). In Montana,
warmer winters were associated with improved reproduction
and survival of Columbia spotted frogs (McCaffrey and
Maxell 2010). This species does not appear to be sensitive
to stand-replacing fires (Hossack and Corn 2007).

Columbia spotted frog populations are stable in areas
with stable water supplies, and are capable of rapid popula-
tion expansion into restored wetlands (Hossack et al. 2013).
However, the amphibian chytrid fungus (Batrachochytrium
dendrobatidis, hereafter referred to as Bd), is prevalent in
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many populations (Pearl et al. 2009; Russell et al. 2010) and
warming waters would, in most systems, favor Bd (see dis-
cussion on western toad). Although the fungus is common,
the population effects of infection are unclear.

Western Toad

Western toads (Anaxyrus boreas) are montane amphib-
ians broadly distributed across the western United States
(Muths et al. 2008); in the southern Rocky Mountains, the
subspecies boreal toad (4. b. boreas) is recognized. The
western toad has suffered apparently widespread declines,
particularly at the southern extent of its range (Corn et al.
2005), a phenomenon well documented in Colorado (Carey
1993). This species suffers from amphibian chytrid fungus,
which is often fatal. Laboratory studies of Bd have found
that it grows optimally at 63 to 77 °F, and colonies are killed
at 86 °F (Piotrowski et al. 2004). Although Bd can grow
in temperatures as cold as 39 °F, warming waters would
increase its prevalence.

In a study across Colorado, Wyoming, and Montana,
Bd was consistently found in western toad tissues, and was
more prevalent in warmer, lower elevation sites (Muths
et al. 2008). A warmer climate may allow Bd to spread to
higher elevations and become even more widespread. But
there is some question about how susceptible the western
toad is to the effects of Bd because increased mortality is
not always associated with high infection rates. Recent
studies indicate that the skin of the toad contains bacterial
colonies that inhibit Bd (Park et al. 2014).

Figure 9.7—Warmer air temperature and less snowpack are
expected to decrease the presence of shallow water during
the summer, reducing habitat for the Columbia spotted
frog (shown here) and western toad. Higher air and water
temperatures may also increase infections from amphibian
chytrid fungus (photo by Roger Myers, Alaska Department
of Fish and Game).
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Assessing Subregional
Differences in Vulnerability

When considering how climate change would affect
wildlife populations in their subregion, Northern Rockies
Adaptation Partnership (NRAP) workshop participants tended
to think in terms of pathways through which climate could
exert an influence (fig. 9.1, black text and arrows). These
pathways can interact with each other, and with population
characteristics (fig. 9.1, blue text and arrows) to produce
an effect on the population of interest (fig. 9.1, red text).
However, a given pathway influences multiple species, and
multiple pathways influence a given species. Following is a
summary of the subregional workshop discussions.

Upper temperature thresholds for moose were discussed
for the Greater Yellowstone Area (GYA) subregion. This was
the only species and subregion with a discussion of direct
physiological sensitivities to climate. However, it was noted
in all subregions that there is a general lack of understand-
ing of direct physiological sensitivities to climate for most
wildlife species. Even when these sensitivities have been
measured (e.g., the lower thermoneutral limits for wolverines
[e.g., Iversen 1972]), however, it is unclear how this labora-
tory-derived knowledge can be interpreted in the context of
habitat use and demographic performance.

Position within a species’ niche can influence population
vulnerability. Some species are at the climatic limits of their
range in particular subregions. Exposure to climate change in
these places is likely to have a strong effect on the ability of
a species to persist, whereas the same amount of change in
the center of its range probably would have less effect. The
Western Rockies and Central Rockies subregions are at the
junction of maritime and continental climates, and many spe-
cies are at the edges of their ranges. For example, participants
in the Central Rockies workshop discussed how future climate
change is expected to increase habitat suitability for the fisher,
such that this species may expand its range into the subregion.

Some species had different habitat associations in differ-
ent subregions. For example, in the GYA, ruffed grouse was
linked to aspen habitat but was associated with a broader
range of habitats in the Central Rockies subregion. Therefore,
ruffed grouse was seen as more sensitive to climate effects on
aspen in the GYA than in the Central Rockies.

The importance of previous habitat loss, potentially caused
by recent warming, differed across the subregions. In the
Eastern Rockies subregion, extensive lodgepole pine (Pinus
contorta var. latifolia) mortality has been caused by mountain
pine beetle (Dendroctonus ponderosae); amplified pine beetle
outbreaks are probably the result of warmer winters (Bentz et
al. 2010). Cavity nesting birds were thought to be more sensi-
tive to potential future habitat loss because they have already
lost a substantial portion of their habitat. Prior habitat loss
was not discussed in the other subregions.

Another pathway for habitat loss discussed in the Central
Rockies workshop was an increase in invasive species. For
example, flammulated owls feed on insects that depend on
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understory plant composition, and that composition could
be altered by increased abundance of invasive plants such as
cheatgrass.

Negative effects on wildlife populations from an increase
in disease occurrence and transmission caused by climate
change (e.g., West Nile virus) were discussed in three of the
five subregions. Participants also noted that relatively little
is known about disease ecology and the future potential for
disease to affect wildlife populations.

Connectivity was a primary concern in four of the five
subregions. Participants considered different scales of con-
nectivity to be important: the ability for individuals to move
through the landscape to meet their daily needs, the ability to
complete seasonal migrations, and the ability to track poten-
tially shifting habitat. Numerous indirect influences on each
of those scales of connectivity were discussed.

Indirect pathways that increase vulnerability to climate
change can also arise when a changing climate influences
landscape configurations such that species are then more at
risk from other stressors. Participants discussed the need to
understand how potential shifts in residential development
(e.g., into riparian habitats) in the GYA and Central Rockies
subregions could affect wildlife. Changing demands for
energy sources and the influence of energy development on
wildlife habitat were discussed in the Central Rockies and
Grassland subregions.

Another source of variation within the Northern Rockies
region was the importance of multiple collaborative ef-
forts focused on conservation issues in the Central Rockies
subregion. USFS participants stated that these collaboratives
increased their range of achievable management tactics.

There were differences in the amount of climate change
expected (exposure), the response of individuals and popula-
tions to that change (sensitivity), and the ability of organisms
and organizations to adapt to that change (adaptive capacity)
across Northern Rockies subregions. However, participants
agreed on the lack of understanding about mechanisms of cli-
mate influence. Identifying and contrasting the importance of
pathways of climate influence across subregions can suggest
potential mechanisms of climate influence. Hypotheses can be
developed to account for these mechanisms, and management
actions can be monitored to test those hypotheses. Based on
the results of those tests, decisions can be made to continue
with management actions, or develop new actions or hypoth-
eses, creating an adaptive monitoring program (Lindenmayer
and Likens 2009) and increasing knowledge of the needs and
climate sensitivities of species (table 9.1). Sensitivities listed
in tables 9.2 through 9.9 provide a starting point for identify-
ing potential hypotheses.

Adapting Wildlife Management
to the Effects of Climate Change

Adaptation to climate change for wildlife resources in
NRAP subregions was focused on maintaining adequate
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habitat and healthy wildlife populations, and increasing
knowledge of the needs and climate sensitivities of species.
Workshop participants identified the major habitats in their
subregion and then developed adaptation strategies for spe-
cies they regarded as important and for which they believed
viable management options exist. For example, participants
in the GYA workshop discussed climate sensitivities of
American pika, but decided not to work through adaptation
options because they did not see how management efforts
could influence pika population viability. Participants tended
to address species or habitats that had not been covered in
prior workshops, even if some were important in their subre-
gion. Adaptation options are summarized according to major
habitats (tables 9.2 through 9.7), which can then be associated
with individual species (table 9.1).

Riparian habitats are important across the Northern
Rockies region. The primary strategy for improving riparian
habitat resilience is maintaining healthy American beaver
populations (table 9.2). Beaver complexes can buffer riparian
systems against both low and high streamflows, and provide
habitat structure and foraging opportunities for multiple
species. Nonriparian wetlands were discussed as important
habitats, but no adaptation strategies were developed.

Quaking aspen habitats are common in the four western
subregions and occur occasionally in the Grassland subre-
gion. Aspen was identified as important because of its high
productivity, role in structural diversity, and habitat for cavity
nesting birds. In the GYA, ruffed grouse were identified as
strongly tied to aspen habitats. Reduction in the distribution
and abundance of aspen is projected for some locations
(especially lower elevation) in a warmer climate (see Chapter
6). The most common tactics for promoting aspen resilience
were allowing wildfire or using prescribed fire in older aspen
stands, providing protection from grazing, and reducing coni-
fer encroachment in any age stand (table 9.3).

Dry ponderosa pine forests are common in the Central
Rockies and Eastern Rockies subregions and provide habi-
tat for cavity nesting birds such as the flammulated owl.
Douglas-fir has encroached on these habitats as a result of
fire exclusion, increasing vulnerability of pine to future fires.
Tactics for promoting ponderosa pine resilience included
reducing competition from Douglas-fir through understory
burning and cutting, protecting mature stands, and planting
ponderosa pine where it has been lost (table 9.4).

The Western Rockies and Central Rockies subregions
support older, mesic forests because they experience a
maritime climate influence (see Chapter 3). These forests,
which provide important habitat for fisher, may have younger
age classes (caused by increased disturbance; see Chapter 8)
and different species composition in a warmer climate (see
Chapter 6). Adaptation strategies included restoring historical
structure, conserving current structure, and promoting poten-
tial future mesic forest habitats (table 9.5).

Mountain sagebrush-grassland habitat occurs in all regions
except the Grassland. In the Western Rockies subregion,
mountain sagebrush-grassland habitats are unique in that
they have less of a sagebrush component, primarily occur in
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Table 9.1—Species included in the Northern Rockies Adaptation Partnership vulnerability assessment, including species

discussed at subregional workshops.

Western Greater

Habitat/Species Rockies Central Rockies Eastern Rockies Yellowstone Area  Grassland
Dry forest

Flammulated owl X

Pygmy nuthatch X X X
Riparian/wetland

American beaver X X X

Moose X

Northern bog lemming X
Townsend’s big-eared bat X X X

Harlequin duck X X

Columbia spotted frog X X

Western toad X X
Quaking aspen

Avian cavity nesters X X X

Ruffed grouse X
Sagebrush grasslands

Pronghorn X

Pygmy rabbit X

Brewer’s sparrow X

Greater sage-grouse X X
Mountain grasslands

Mountain quail X
Mesic old-growth forest

Fisher X X
Snow-dependent species

American pika X

Canada lynx X X
Wolverine X X

steep mountain canyons, and support populations of mountain
quail. Differences in aspect have a strong influence on climate
in these canyons. In a warmer climate, these habitats could
lose some of their forb component, making them vulnerable
to increased abundance of nonnative species (see Chapter 7).
Specific tactics for restoring historical habitat and maintaining
current habitat included managing fire, controlling nonnative
species, and restoring formerly cultivated lands (table 9.6).
Sagebrush habitats are common in the Eastern Rockies,
GYA, and Grassland subregions, supporting gallina-
ceous birds (greater sage-grouse, greater prairie chicken
[Tympanuchus cupido), sharp-tailed grouse [7. phasianel-
lus]), and pygmy rabbits, among other species. Tactics for
maintaining adequate sagebrush habitat included managing
fire, controlling nonnative species, preventing fragmentation,
and restoring degraded habitat (table 9.7). Current focus on
conservation of greater sage-grouse within sagebrush habitat
in the western United States will benefit from including a
climate-smart approach to management.

USDA Forest Service RMRS-GTR-374. 2018

Developing on-the-ground management tactics requires
understanding how climate change will influence species. In
all subregions, and independent of habitat association, partici-
pants identified the need for better understanding of species
requirements and the mechanisms of climate change impacts.
In addition, connectivity and the potential for increases in
disease were identified as important processes affecting mul-
tiple habitats and species in each subregion, although climate
sensitivities of diseases are not well understood. Accordingly,
several adaptation strategies were suggested to fill knowledge
gaps (table 9.8). There is wide agreement on the need to bet-
ter understand the mechanisms of climate sensitivities relative
to the life histories of individual species. Examples of tactics
to accomplish this objective include analyzing female Canada
lynx home ranges to determine the necessary distribution and
size of habitat patches, quantifying and monitoring pygmy
rabbit distribution, and understanding sagebrush succession
after fire. The influence of low snow years on wolverine
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Table 9.2—Adaptation options that address climate change effects on riparian habitat and associated wildlife species in the

Northern Rockies.

Sensitivity to climatic variability and change: Decreased streamflow reduces riparian vegetation, affecting food supply and

habitat structure for multiple species.

Adaptation strategy/approach: Improve riparian habitat by maintaining healthy beaver populations on the landscape.

Specific tactic - A

Tactic Inventory current and
potential habitat (include

multiple factors).

Where can tactics be
applied? (geographic)

Range-wide

Specific tactic - B

Restore riparian habitat
e.g. plant willows, manage grazers,
raise water level.

Suitable habitats range-wide

Specific tactic - C

Translocation, manage
trapping

Suitable habitats range-wide

Table 9.3—Adaptation options that address climate change effects on quaking aspen habitat and associated wildlife species in the

Northern Rockies.

Sensitivity to climatic variability and change: A warmer climate will lower water tables, leading to loss of quaking aspen.

Adaptation strategy/approach: Promote aspen resilience.

Specific tactic - A

Specific tactic - B

Specific tactic - C

Tactic Promote disturbance (fire, Protect from grazing (fencing, Reduce conifer competition
cutting) in older aspen stands. manage grazing). (fire, cutting) in any age aspen
stand.
Where can tactics be  Range-wide Range-wide Range-wide
applied? (geographic)
denning success is an example of a mechanistic relationship Acknowle dgments
with climate that needs more data.

Connectivity, although not tied to a particular habitat type,
is considered an important conservation strategy for most
species in all Northern Rockies subregions, although climate
influences on connectivity are uncertain. Several forms of
connectivity were identified: daily, seasonal, dispersal, and
range shift. Connectivity can be affected by changes in water
supply, habitat loss, habitat shifts, vegetation phenology
shifts, human population expansion and redistribution, and
snowpack dynamics. Specific tactics for increasing knowl-
edge that would enable the maintenance of connectivity
include monitoring connectivity with genetic, tracking, and
remote-sensing tools; identifying dispersal habitats; and iden-
tifying and removing or mitigating barriers to connectivity
(table 9.9).

Disease is also important in most subregions, not tied to a
particular habitat, and not well understood. Specific tactics for
addressing disease include monitoring the presence of white-
nose syndrome (caused by the fungus Pseudogymnoascus
destructans) in bat hibernacula (ongoing through collabora-
tion of the USFS, other agencies, and Northern Rocky
Mountain Grotto), monitoring disease trends in moose and
bighorn sheep, and coordinating with State agencies to moni-
tor West Nile virus.

More specific details on adaptation strategies and tactics
that address climate change effects on wildlife in each NRAP
subregion are in Appendix 9A.
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Table 9.9—Adaptation options that address climate change effects on connectivity for wildlife populations in the Northern Rockies.

Sensitivity to climatic variability and change: Connectivity depends multiple factors, including water supply, habitat shifts,
vegetation phenology, snow pack dynamics, and human population expansion and redistribution.

Adaptation strategy/approach: Maintain connectivity.

Specific tactic - A

Tactic Monitor connectivity through
genetics, tracking, and remote
sensing.

Where can tactics be  Region-wide

applied? (geographic)

Specific tactic - B

Compile table of known
connectivity vulnerabilities by
species.

Region-wide

Specific tactic - C

Identify and remove barriers.

Region-wide
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Appendix 9A—Adaptation Options for Wildlife in the
Northern Rockies.

The following tables describe climate change sensitivities and adaptation strategies and tactics for wildlife, developed in
a series of workshops as a part of the Northern Rockies Adaptation Partnership. Tables are organized by subregion within
the Northern Rockies. See Chapter 9 for summary tables and discussion of adaptation options for wildlife.
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