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Abstract
Sparsely distributed species attract conservation concern, but insufficient informa-
tion on population trends challenges conservation and funding prioritization. 
Occupancy-based monitoring is attractive for these species, but appropriate sam-
pling design and inference depend on particulars of the study system. We employed 
spatially explicit simulations to identify minimum levels of sampling effort for a 
regional occupancy monitoring study design, using white-headed woodpeckers 
(Picoides albolvartus), a sparsely distributed, territorial species threatened by habitat 
decline and degradation, as a case study. We compared the original design with com-
monly proposed alternatives with varying targets of inference (i.e., species range, 
space use, or abundance) and spatial extent of sampling. Sampling effort needed to 
achieve adequate power to observe a long-term population trend (≥80% chance to 
observe a 2% yearly decline over 20 years) with the previously used study design 
consisted of annually monitoring ≥120 transects using a single-survey approach or 
≥90 transects surveyed twice per year using a repeat-survey approach. Designs that 
shifted inference toward finer-resolution trends in abundance and extended the 
spatial extent of sampling by shortening transects, employing a single-survey ap-
proach to monitoring, and incorporating a panel design (33% of units surveyed per 
year) improved power and reduced error in estimating abundance trends. In contrast, 
efforts to monitor coarse-scale trends in species range or space use with repeat 
surveys provided extremely limited statistical power. Synthesis and applications. 
Sampling resolutions that approximate home range size, spatially extensive sampling, 
and designs that target inference of abundance trends rather than range dynamics 
are probably best suited and most feasible for broad-scale occupancy-based monitor-
ing of sparsely distributed territorial animal species.
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1  | INTRODUCTION

Population monitoring informs biological conservation by revealing 
population trends, which inform conservation status and funding 
priorities (Marsh & Trenham, 2008). Conservationists focus on spe-
cies experiencing severe or consistent declines due to anthropogenic 
impacts that elevate extinction risk (Male, Bean, & Schwartz, 2005; 
Rodrigues, Pilgrim, Lamoreux, Hoffmann, & Brooks, 2006). Species of 
uncertain status due to insufficient data are difficult to target, even if 
life history or declining habitat warrant concern. Information for pri-
oritizing conservation is particularly limited for sparsely distributed 
species (Roberts, Taylor, & Joppa, 2016). Imperfect detectability and 
difficulties with modeling also impose challenges for territorial animals 
(Efford & Dawson, 2012; Latif, Ellis, & Amundson, 2016). Low detect-
ability and an extensive range may necessitate broad and sustained ef-
fort to characterize population status, despite typically limited funding 
(Joseph, Field, Wilcox, & Possingham, 2006).

Biologists increasingly use occupancy-based monitoring for these 
species (Ellis, Ivan, & Schwartz, 2014; Joseph et al., 2006). Detection–
nondetection data demand less funding than counts or mark–recap-
ture data, allowing more spatially extensive surveys (Joseph et al., 
2006; Noon, Bailey, Sisk, & McKelvey, 2012); while replicate sampling 
can correct for imperfect detection (MacKenzie et al., 2002; Tyre 
et al., 2003). Occupancy quantifies species distribution, which can in-
form species range at coarse scales or finer-scale changes in space 
use or abundance, all relevant to extinction risk (Clare, Anderson, & 
MacFarland, 2015; Joseph et al., 2006; Noon et al., 2012).

Study design for monitoring occupancy depends on desired infer-
ence and species ecology. Relatively large sampling units potentially 
occupied by multiple individuals can efficiently inform species range 
estimates, whereas smaller units may be better for tracking finer-scale 
changes in local abundance (Clare et al., 2015; Efford & Dawson, 2012; 
Noon et al., 2012). With smaller units, the timing of replicate samples 
used to correct for detectability in relation to territorial movement fur-
ther shapes potential inference (Efford & Dawson, 2012; Latif et al., 
2016; Valente, Hutchinson, & Betts, 2017). Sampling continuously dis-
tributed populations of mobile individuals with indefinite home range 
boundaries is especially challenging; such populations are inherently 
heterogeneous in ways not quantified by commonly used models, po-
tentially obscuring inference (Efford & Dawson, 2012). More complex 
models that correctly specify this heterogeneity typically require more 
sampling effort, which may be infeasible or compromise sampling ex-
tent needed to document broad-scale trends (Welsh, Lindenmayer, 
& Donnelly, 2013). Simulation approaches can help inform design of 
occupancy-based monitoring with such inherent and unavoidable mis-
specification of spatial heterogeneity (Ellis, Ivan, Tucker, & Schwartz, 
2015; Ellis et al., 2014).

Desired inference should primarily determine monitoring ap-
proach, but pragmatic considerations also influence study design. 
Biologists may size sampling units for study area coverage or to match 
the resolution of available environmental data (Zielinski, Baldwin, 
Truex, Tucker, & Flebbe, 2013; e.g., Steenweg et al., 2016; but see 
Linden, Fuller, Royle, & Hare, 2017). Additionally, biologists select 

statistical models that best leverage available data. For example, de-
spite a fundamental relationship between detectability and abundance 
(Royle & Nichols, 2003), analysts may hold detectability constant for 
parsimony (e.g., Zielinski et al., 2013). Sampling is often then designed 
to achieve adequate statistical power for tracking occupancy trends 
without a priori specifying desired targets of inference (e.g., species 
range, space use, or abundance). Inference of process, however, is ulti-
mately needed to inform conservation.

Our questions on monitoring design were motivated by a regional 
occupancy-based monitoring program for white-headed woodpecker 
(Picoides albolvartus; hereafter WHWO; Figure 1), a sparsely distrib-
uted, regionally endemic species with narrow habitat requirements 
(Garrett, Raphael, & Dixon, 1996; Latif, Saab, Mellen-Mclean, & 
Dudley, 2015). WHWO depend on dry mixed conifer forests domi-
nated by ponderosa pine (Pinus ponderosa) and maintained by mixed-
severity fire (cf. Hessburg, Agee, & Franklin, 2005). Recent habitat 
declines and evidence of low reproductive success in some areas have 
raised conservation concerns (Hollenbeck, Saab, & Frenzel, 2011), but 
data on population trends are lacking (Wisdom et al., 2002).

To help fill this information gap, regional occupancy-based moni-
toring was established to evaluate population and distributional trends 
(Mellen-McLean, Saab, Bresson, Wales, & VanNorman, 2015). Repeat 
detection–nondetection surveys along transects in potential habitat 
of Oregon and Washington (Figure 2) informed occupancy trends cor-
rected for imperfect detection. Surveyors applied a common proto-
col for birds of point-based surveys oriented along transects (see also 
Rota, Fletcher, Dorazio, & Betts, 2009; Valente et al., 2017). Available 
funding was substantial (~$800 thousand) but nevertheless limited 
monitoring to 6 years at 30 transects while also accommodating other 

F IGURE  1 Photograph of a White-headed Woodpecker
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objectives (Mellen-McLean et al., 2015). Growing agency interest in 
white-headed woodpeckers could motivate expanded and more fo-
cused monitoring of long-term trends, which we aimed to inform.

To address the questions raised by this case study, we used sim-
ulations to evaluate alternative approaches to regional monitoring 
while explicitly considering potential inference and species ecology. 
Spatially explicit simulations correctly represented model misspecifi-
cation typically inherent with occupancy-based monitoring of continu-
ously distributed populations, improving estimates of statistical power 
for informing study design (Ellis et al., 2014, 2015). We assessed min-
imum effort needed for desirable statistical power given the historical 
study design, and we explored how alternate sampling allocations in-
fluenced statistical power. We considered sampling allocations alter-
nately suited for inferring coarse-scale distributional changes or range 
dynamics versus finer-scale changes in abundance or space use (e.g., 
Valente et al., 2017). Candidate designs varied in how they favored 
spatially extensive versus more intensive survey allocation, the value 
of which depends on population heterogeneity (Rhodes & Jonzén, 

2011). Alternatives considered here represent commonly used designs 
for broad-scale occupancy-based studies, thus providing general guid-
ance for monitoring sparsely distributed, territorial animals.

2  | MATERIALS AND METHODS

2.1 | White-headed Woodpecker regional 
monitoring

Occupancy-based monitoring of WHWO across the inland north-
western United States was originally implemented in 2011–2016 
(Mellen-McLean et al., 2015). Surveys occurred along 30 transects 
twice a year during the nesting season, May 1–June 30. Surveyors 
broadcast recorded calls and drumming to elicit territorial responses 
to improve detectability. Transects were 10 survey points spaced 
~300 m apart. A transect survey consisted of surveying each point 
along a transect. This approach is common for surveying birds (com-
mon approach for birds; e.g., Amundson, Royle, & Handel, 2014; 

F IGURE  2 National forests of the 
eastern Cascade Mountains, Oregon 
and Washington, U.S.A. White-headed 
Woodpecker regional monitoring focused 
on potential habitat (gray), where large-
cone pine species (mainly ponderosa) 
dominate
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Pavlacky, Blakesley, White, Hanni, & Lukacs, 2012; Rota et al., 
2009), and for WHWO provided opportunity for broadcasting calls 
followed by a period of listening (max 5 min total) before proceed-
ing to the next point. To conserve time, surveyors immediately 
proceeded to the next point along a transect when white-headed 
woodpecker was first detected. Thus, they strictly recorded de-
tection–nondetection data, restricting the focus of monitoring to 
occupancy.

2.2 | Population and sampling simulations

Following the initial 6-year effort, we simulated occupancy-based 
monitoring of white-headed woodpeckers to inform potential future 
efforts. Recognizing the need for greater sampling effort to meaning-
fully quantify trends, however, we simulated surveys of ≥60 transects 
over 20 years.

Simulated populations experienced deterministic trends based on 
an exponential model, 

where Nt is population abundance in year t and λN is the proportion 
change in abundance per year (for theoretical basis, see Gotelli, 2001). 
We considered a range of trend scenarios of potential conservation 
concern, λN = {1.0, 0.98, 0.95, or 0.9}, that is, 0%, 33%, 64%, or 88% 
decline over 20 years. Simulated trends represented effect sizes for 
analyzing power. Positive trends (λN > 1.0) were less of a concern for 
informing prioritization of WHWO for conservation action and there-
fore not considered. Although real populations fluctuate stochastically, 
we lacked information for simulating specific levels of stochasticity, 
and deterministic trends provided clearer effect sizes for interpreting 
power estimates (see also Ellis et al., 2015; MacKenzie & Royle, 2005). 
We intended the range of simple deterministic trends considered 
here to inform surveillance monitoring aimed at documenting unan-
ticipated change rather than particular ecological scenarios (Hutto & 
Belote, 2013).

We simulated population monitoring so as to explicitly represent 
the process of sampling discrete detection–nondetection data for 
continuously distributed populations (cf. Efford & Dawson, 2012; Ellis 
et al., 2014; contra MacKenzie & Royle, 2005). We conducted sim-
ulations using the rSPACE package (Ellis et al., 2014, 2015) in R (R 
Core Team, 2015). Simulations entailed (1) randomly distributing N1 
home ranges across suitable habitat, (2) calculating the probability of 
encountering ≥1 white-headed woodpecker at a survey point, (3) gen-
erating detection–nondetection data based on these encounter prob-
abilities, and (4) randomly removing Nt × (1 − λN) individuals from the 
landscape and repeating steps 2–3 for each remaining year t = 2–20 
(Appendix S1). We collected data for a region-wide 300 m point grid, 
and later derived transect monitoring scenarios. Surveyors rarely re-
corded detections >150 m away (7% of 2011–2016 detections), so we 
simulated 150-m fixed-radius point surveys.

We consolidated point data to represent transect monitoring sce-
narios varying in sampling effort and allocation. A transect detection 
represented ≥1 detection at any given point along a transect on a 

given day. One home range (1-km radius) could include multiple neigh-
boring points, so point-level detections within transects were spatially 
correlated, whereas ≥2 km transect spacing avoided spatial correlation 
in transect detections. Additionally, with transects, we were able to 
explore a fundamental issue in monitoring design: the relative merits 
of sampling intensively (e.g., more points per transect or repeat sur-
veys) versus extensively (more transects).

We considered monitoring scenarios to accomplish two objectives: 
(1) identify levels of sampling effort capable of providing desirable 
power (≥80% chance to observe a decline given λN ≤ 0.98); (2) com-
pare commonly considered sampling allocation strategies representing 
alternative targets of inference and spatial extents of sampling. We ad-
dressed objective 1 by varying sampling effort (ntransect ≥ 60; i.e., npoint-
surveys-per-year ≥ 1,200) with different trends and the historical sampling 
allocation of 10 points per transect surveyed twice every year. For ob-
jective 2, we focused on a long-term decline scenario (λN = 0.98) and 
fixed sampling effort (npoint-surveys-per-year = 1,200) while varying moni-
toring strategies. The historical allocation scheme represented an in-
tended inference of relatively coarse-scale trends. Alternative schemes 
included surveying shorter transects (8–3 points per transect), which 
targeted inference of finer-scale trends by sampling smaller areas po-
tentially occupied by fewer individuals. We also considered surveying 
transects only once per year, representing single-survey occupancy 
approaches whose estimates provide temporal snapshots of popula-
tions, useful for inferring changes in abundance (Hutto, 2016; Latif 
et al., 2016). Finally, we considered surveying <100% of transects per 
year (i.e., panel designs; Bailey, Hines, Nichols, & MacKenzie, 2007; 
Urquhart & Kincaid, 1999) or repeating surveys at <100% of transects 
each year. Having fixed sampling effort, these alternate schemes al-
lowed monitoring of more transects, which extended spatial sampling.

For simplicity, simulations assumed no false-negative observer 
error (hereafter observer error), that is, white-headed woodpeckers 
were always detected if present during a survey. Thus, detectability 
was determined exclusively by territorial movement between repeat 
surveys within a year. This assumption was defensible because call-
broadcast surveys reduce observer error and standardized surveys 
limit potentially confounding interannual variation in observer error 
(Mellen-McLean et al., 2015). Additionally, we calibrated simulations 
with pilot data (Appendix S2). Encounter probabilities during a sur-
vey therefore reflected the number, location, size, and spacing of 
home ranges, informed by white-headed woodpecker ecology; pop-
ulation size reflected calibration with pilot data and assumed trends 
(Appendices S1 and S2).

Spatial variability in detectability (i.e., encounter probabilities in 
simulations) emerged from variation in nesting habitat and random 
placement of home ranges within this habitat, which caused local 
abundance and proximity to centers of activity to vary among tran-
sects. Reflecting likely realities, detectability at occupied transects 
increased with increasing abundance and decreased with distance 
from home range centers (see Appendix S1). Analyses ignored this 
spatial heterogeneity, and thus informed study design while account-
ing for likely constraints on model complexity due to limited sampling 
effort. We initially considered smaller home ranges (600 m radius), 

(1)Nt=N1×λt
N
,
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but calibration to pilot data required compensatory adjustments to 
initial abundance, resulting in similar patterns in statistical power (Q. 
Latif, unpublished data). We restricted simulations to national for-
ests, representing 77% (7.7 × 106 ha) of potential habitat within the 
region (Figure 2).

2.3 | Data analysis

For scenarios yielding repeat-survey data, we estimated trends with 
two different occupancy models representing commonly consid-
ered ways of correcting for detectability (p; e.g., Linden et al., 2017; 
Steenweg et al., 2016; Zielinski et al., 2013) to estimate occupancy 
probability (ψ; Figure 3a,b). One model allowed detectability esti-
mates to vary interannually (hereafter the yearly-p model; Figure 3a), 
whereas the other held detectability constant (hereafter the constant-
p model; Figure 3b; for model structures, see Appendix S3). Because 
individuals could move in or out of the surveyed area between re-
peat surveys within a year, these models quantified the probability 
of a transect intersecting ≥1 home range, hereafter true occupancy, 
which describes species range or space use (Efford & Dawson, 2012; 
MacKenzie & Royle, 2005). The yearly-p model allows detectability 

to change with changing abundance (Royle & Nichols, 2003) to bet-
ter estimate true occupancy. The constant-p model misspecifies true 
occupancy, but is frequently considered and may be selected for par-
simony in applied studies (e.g., Zielinski et al., 2013). Additionally, hav-
ing controlled for observer error (e.g., if nonexistent as in simulations, 
or controlled via standardized surveys), the constant-p model coerces 
occupancy estimates to reflect any interannual changes, shifting the 
target of inference to abundance (Figure 3b).

For scenarios yielding single-survey data, we estimated trends 
using logistic regression (see structure in Appendix S3). Having ex-
cluded observer error in simulations, logistic regression models esti-
mated probability of ≥1 individual’s physical presence during a survey, 
hereafter probability of physical presence. Single-survey scenarios 
represented single-survey occupancy approaches, in which replicate 
surveys occur within a narrow enough timeframe for detectability to 
quantify observer error so that occupancy estimates quantify proba-
bility of physical presence (e.g., double-observer and removal designs; 
Nichols et al., 2008; Rota et al., 2009). By omitting observer error from 
simulations, however, replicate surveys were unnecessary to quantify 
physical presence. Probability of physical presence represents a tem-
poral snapshot of a population unaffected by territorial movement 

F IGURE  3 How model estimates reflect underlying processes under alternative monitoring approaches. Repeat-survey occupancy estimates 
fundamentally quantify true occupancy (a, b) but can index abundance trends if detectability is held constant (b, contra A). Territorial movement 
influences repeat-survey occupancy estimates (a, b), whereas single-survey occupancy estimates represent population snapshots not influenced 
by movement (c). False-negative observer error was not simulated but could influence estimates in reality
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expected to closely track abundance (Figure 3c; Hutto, 2016; Latif 
et al., 2016). Additionally, surveying transects only once allowed us to 
monitor twice as many transects, increasing sampling extent. In prac-
tice, auxiliary sampling (e.g., recording detection timing or deploying 
multiple observers) would account for observer error (Nichols et al., 
2008; Rota et al., 2009), likely adding to uncertainty in trend esti-
mates. Ignoring observer error in both single- and repeat-survey sce-
narios, however, made their comparison informative.

We quantified occupancy trends as proportion yearly change in 
odds occupancy, λψ =

ψt+1∕(1−ψt+1)

ψt∕(1−ψt)
 (MacKenzie et al., 2006). We ana-

lyzed detection–nondetection data with fixed year effects and subse-
quently calculated least-squares trends in yearly occupancy estimates 
(see also Ellis et al., 2014). We quantified statistical power as percent 
simulations when 95% Bayesian credible intervals (BCIs) for the esti-
mated trend for the study period (λ̂ψ where logit(ψt)=β0+ log (λψ)× t; 
p. 200, MacKenzie et al., 2006) fell below 1. We also calculated root 
mean squared error for trend estimates (RMSEN=

√

mean(λ̂ψ −λN),  
RMSEψ =

√

mean(λ̂ψ −λψ )). When quantifying true occupancy, we 
considered occupied transects to be those with encounter p ≥ .05. 
Having found extremely limited statistical power with yearly-p esti-
mates (see Objective 1 Results), we primarily assessed sampling allo-
cations (Objective 2) for constant-p and logistic regression models, but 
then tested yearly-p again with better allocation. Furthermore, given 
likely targets of inference, we considered RMSEN most relevant to 
constant-p and logistic regression models, and RMSEψ relevant to the 
yearly-p model. For additional methods and rationale, see Appendix 
S3.

3  | RESULTS

3.1 | Occupancy, abundance, and estimator behavior

Comparing true occupancy (proportion transects with encounter p ≥ .05) 
and abundance informed understanding of statistical power and estima-
tor properties. True occupancy related positively with abundance but pla-
teaued at higher abundances (Figure 4a,c). True occupancy declines lagged 
abundance declines (Figure 4b,d). With shorter transects, true occupancy 
corresponded better but still imperfectly with abundance (Figure 4c,d).

Occupancy estimates remained constant with no abundance trend 
and declined with declining abundance (Figure 5). Detectability es-
timates declined with declining abundance either across scenarios 
(constant-p estimates) or through time (yearly-p estimates; Figure 6). 
Yearly-p estimator precision was less than for constant-p estimates 
and declined with declining abundance (Figures 5 and 6).

Detectability estimates followed the behavior of encounter prob-
abilities at occupied transects but were generally higher, that is, posi-
tively biased (Figure 6), making occupancy estimates negatively biased 
(Figure 5). Logistic regression estimates deviated even more from true 
occupancy (Figure 5c,f,i,l), reflecting the differing target of inference 
(i.e., probability of physical presence; see Section 2 and Appendix S3).

3.2 | Objective 1: Sampling effort

With historical survey allocation, statistical power increased with in-
creasing sampling effort and stronger population declines (Figure 7). 

F IGURE  4 True occupancy (ψ) versus 
abundance (N = number of individuals 
across all 7,676,971 ha of potential habitat 
in Oregon and Washington national 
forests; a, c) and correspondence of (odds) 
occupancy (λψ) with abundance trends 
(λN; b, d) for simulated white-headed 
woodpecker populations. Thirty replicate 
populations monitored for 20 years for 
each trend scenario are depicted when 
surveyed at transects consisting of 10 
points (a, b) or three points (c, d) each. In 
panels b and d, the red line indicates 1:1 
correspondence (desirable for inference) 
between occupancy and abundance trends
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The constant-p model and logistic regression (with single-survey al-
location) generally provided adequate power (≥80% chance of ob-
serving a decline). Power was only inadequate with a small effect size 
(λN = 0.98) and minimal sampling effort (j ≤ 60 and 90 transects for 
constant-p and logistic regression, respectively). In contrast, power 
was never adequate with the yearly-p model. Spurious trends were 
rarely observed (1.5% of simulations in which λN = 1).

With no abundance or occupancy trends, models estimated ac-
tual trends with minimal error and no apparent bias, but error and 
bias grew with increasing trend (Figure 8). The constant-p model in-
creasingly overestimated declines with steeper abundance declines, 

although abundance trends were estimated better (RMSEN ≤ 0.055) 
than occupancy trends (RMSEψ ≤ 0.105). Yearly-p trend estimates 
were centered between actual abundance and occupancy trends 
(RMSE ≤ 0.05). Models fitted to single-survey data estimated true 
abundance trends with the least error (RMSEN ≤ 0.008) and no ob-
vious bias.

3.3 | Objective 2: Sampling allocation

Monitoring strategies that targeted inference of finer-scale trends 
in space use or abundance and extended sampling spatially generally 

F IGURE  5 Yearly occupancy estimates from simulated regional white-headed woodpecker monitoring. Simulated trends were λN = 1 (a–c), 
0.98 (d–f), 0.95 (g–i), and 0.9 (j–l). Repeat-survey occupancy estimates assumed constant detectability (a, d, g, and j) or variable detectability 
among years (b, e, h, and k). Single-survey estimates assumed perfect detectability (c, f, i, and l). Thirty simulations of monitoring transects of 
10 points each for 20 years are represented for each scenario (n = 150 and 300 transects for repeat- and single-survey scenarios, respectively). 
Black dots and blue vertical bars show yearly estimates and 95% BCIs jittered for display. Black lines connect estimates from consecutive years 
for individual simulations. Red dots show mean true occupancy for 30 simulations, that is, proportion of all possible transects occupied
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provided more power and less estimation error than the historical 
strategy. Power improved and estimation error decreased when 
monitoring shorter but more transects (Figures 9 and 10). Power 
was greatest and error (RMSEN) least when monitoring the probabil-
ity of physical presence with single-survey data (Figures 8c and 10). 
In contrast, we found the least power and greatest error (RMSEψ) 
when attempting to monitor true occupancy with repeat surveys and 
the yearly-p model (Figure 8b). Interestingly, despite more explic-
itly targeting inference of occupancy, yearly-p trends estimates did 
not estimate occupancy trends with any less error (RMSEψ ≤ 0.105) 
than logistic regression (RMSEψ ≤ 0.055). Although it provided ad-
equate power in many scenarios, the constant-p model tended to 
overestimate both occupancy and abundance declines (Figures 8a 
and 9).

Panel designs with relatively small panels (33% of transects sur-
veyed each year) also improved power and reduced error, although 
larger panels (50% of transects surveyed each year) did not provide 
notable gains. Conducting fewer repeat surveys in exchange for more 
transects also did not substantively affect power and tended to in-
crease estimation error (Figure 11).

The design that maximized power and minimized error with con-
stant-p and logistic regression models was a 33% panel design with 
3 points per transects. Even with this design, the yearly-p model 
provided inadequate power (13%), although trend estimation error 
was less than with the historical design (RMSEψ = 0.009; nsim = 100;  
ntransect = 600 over 20 years; compare with Figure 7b).

4  | DISCUSSION

Our simulations suggested minimum levels of sampling effort needed 
to provide adequate power while also informing study design for mon-
itoring WHWO with explicit targets of inference. With the historical 
design of surveying transects with 10 points each twice a year to tar-
get coarse-scale trends in true occupancy (species range or space use), 
we found 60–90 transects could be sufficient for desirable power. 
This design would require holding detectability constant across years, 
however, which would force occupancy estimates to index abundance 
(constant-p model) and cloud potential inference. Surveying shorter 
transects (i.e., closer to the span of one home range) using a 33% 

F IGURE  6 Detection probability (p; 
black = median, blue = 95% BCIs) estimates 
from repeat-survey occupancy models 
and encounter probabilities (red; i.e., true 
detectability) for simulated white-headed 
Woodpecker regional monitoring. Scenarios 
entailed monitoring 150 transects of 10 
points each surveyed twice yearly for 
20 years. Estimates assume constant 
detectability (a) or variable detectability 
among years (b–e; jittered horizontally for 
display). Encounter probabilities are median 
values for occupied transects (i.e., with 
encounter p ≥ .05). Simulated trends were 
λN = 1.0 (a, b), 0.98 (a, c), 0.95 (a, d), or 0.9 
(a, e) (n = 30 simulations per scenario)
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panel design could allow stronger and clearer inference of abundance 
trends, extend sampling spatially, and improve power. For further im-
provements to power and inference, we could survey transects only 
once per year to monitor the probability of physical presence while 
accounting for observer error. In contrast, sampling designed to docu-
ment changes in true occupancy did not appear feasible at sampling 
levels considered here.

4.1 | Sampling resolution and scale of inference

Our results further emphasize the benefits of sampling at resolutions 
(i.e., unit size, grid cell size) approximating the size of an individual 
home range documented by others (Efford & Dawson, 2012; Linden 
et al., 2017). Finer resolution sampling generates occupancy estimates 
that more closely track abundance. This estimator property should be 
desirable for practitioners who monitor occupancy in lieu of abun-
dance primarily on pragmatic grounds.

Single-survey sampling can similarly benefit monitoring of ter-
ritorial animals by providing temporal snapshots of populations un-
affected by movement and therefore closely related to abundance 
(Hutto, 2016; Latif et al., 2016). We simulated an ideal world with no 
observer error wherein single-survey estimates were readily interpre-
table as the probability of physical presence. In reality, some observer 
error is likely, requiring auxiliary sampling to estimate a snapshot prob-
ability of physical presence. Auxiliary measurements of detection tim-
ing or covariates of observer error could inform bias correction with 
minimal additional survey effort (Lele, Moreno, & Bayne, 2012; Rota 
et al., 2009). For monitoring white-headed woodpeckers, analysis of 
detection timings recorded historically (Mellen-McLean et al., 2015) 

combined with published guidelines (MacKenzie & Royle, 2005) could 
inform optimal survey length for single surveys. Other approaches are 
described but would require more effort or are designed to inform 
abundance rather than occupancy estimates (e.g., multiple observers, 
replicated camera or track stations, distance sampling; Amundson 
et al., 2014; Nichols et al., 2008). Lacking data on observer error, naïve 
occupancy could usefully index abundance if we are confident that 
observer error does not vary interannually and therefore cannot con-
found trend estimation (e.g., with standardizing bird surveys; Hutto, 
2016).

Observer error can vary with local abundance (Royle & Nichols, 
2003), potentially introducing noise not represented in our simula-
tions. Larger sampling units potentially occupied by multiple individ-
uals would be most prone to such variability, so aligning sampling 
resolution with home range size would be desirable even with a single-
survey design.

A single-survey design would require consistently conducting 
surveys when individuals are readily detectable. With sensitivity of 
nest survival to temperature (Hollenbeck et al., 2011), climate change 
may alter nesting phenology, potentially influencing responsiveness 
to call broadcasts. Such changes could necessitate adjusting the tim-
ing of surveys, which could be informed by targeted repeat surveys, 
as are commonly implemented for birds (Latif, Fleming, Barrows, & 
Rotenberry, 2012; Rota et al., 2009).

Our results indicate challenges for monitoring to infer changes in 
species range (coarse-scale) or space use (finer scale) as in yearly-p 
scenarios here. By definition, occupancy only declines when abun-
dance declines enough to result in local extirpation, so true occu-
pancy declines could indicate strong need for conservation. More 

F IGURE  7 Simulation-based power 
to observe white-headed woodpecker 
regional occupancy trends (percent 
simulations with 95% BCI <1). Scenarios 
varied in number of transects, monitoring 
approach (constant-p or yearly-p 
occupancy models, or logistic regression), 
and trend (λN = exponential change in 
abundance). For all scenarios, transects 
consisted of 10 survey points surveyed 
twice (occupancy models) or once (logistic 
regression) per year. Constant-p assumed 
constant detectability, whereas yearly-p 
allowed variable detectability among years. 
Logistic regression allowed double the 
number of transects by analyzing single-
survey data
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intensive sampling in areas or years with low abundance, however, 
may be needed to correctly identify occupancy declines. At finer 
scales, spatial heterogeneity in detectability arising from variability 
in local abundance and home ranges that lack definitive boundaries 
can limit accurate estimation of space use (Efford & Dawson, 2012). 
Biases in occupancy and detectability estimates observed here likely 
primarily reflect these effects. Including habitat relationships with 
occupancy in analytical models (omitted from simulations) might 
help by accounting somewhat for spatial heterogeneity in the data, 
but effects on detectability of varying local abundance and proxim-
ity to home ranges at occupied transects would remain. Effectively 
estimating species distribution at any scale may require substan-
tial spatial or temporal replication within sampling units (Pavlacky 
et al., 2012; Valente et al., 2017). Given likely demands on funding, 
such approaches may be feasibly implemented only infrequently 
(e.g., Cruickshank, Ozgul, Zumbach, & Schmidt, 2016). Alternatively, 
predictive models (e.g., Hollenbeck et al., 2011; Latif et al., 2015; 
Wightman, Saab, Forristal, Mellen-McLean, & Markus, 2010) could 
supplement trend monitoring by identifying changes in habitat.

Nested surveys (e.g., points along transects) can inform hierar-
chically structured models capable of estimating patterns or trends 
at multiple scales (Pavlacky et al., 2012; Rota et al., 2009; Royle & 
Kéry, 2007). Multiscale inference would require sufficient sampling 
at all scales of interest, however, which may be beyond resources 

available for many monitoring programs (Valente et al., 2017). Our 
initial attempts found inadequate sampling for meaningful multi-
scale inference (Q. Latif, unpublished data), so we abandoned such 
approaches here.

4.2 | Sampling extent

Spatially extensive sampling is theoretically advantageous when mon-
itoring spatially heterogeneous populations (Rhodes & Jonzén, 2011). 
In our simulations, spatial heterogeneity emerged from uneven dis-
tribution of habitat and random variation in local abundance among 
occupied transects. The benefits observed here with shorter transects 
and single surveys could reflect advantages of spatially extended sam-
pling. Panel designs, however, did not inherently change the target 
of inference, and so their results more definitively demonstrated po-
tential advantages with spatially extended sampling. In contrast, ig-
noring heterogeneity inherent in continuously distributed territorial 
species may obscure advantages of panel designs (Bailey et al., 2007; 
Urquhart & Kincaid, 1999).

Not all spatial extensions to sampling were beneficial. Given a 
repeat-survey design, we gained nothing by reducing repeat surveys 
to monitor more transects. Such strategies require high detectability 
(MacKenzie & Royle, 2005) likely uncharacteristic of sparsely and 
continuously distributed territorial species (see above). The lack 

F IGURE  8 Correspondence of 
estimated occupancy trends (λ̂ψ) with true 
abundance (λN) and occupancy (λψ) trends. 
Trends were estimated with repeat-survey 
constant-p (a) and yearly-p (b) occupancy 
models, and logistic regression analyzing 
single-survey data (c). Red and blue 
dots mark perfect correspondence with 
actual abundance and occupancy trends, 
respectively. Root mean squared error 
quantifies the overall estimation error 
with respect to abundance (RMSEN) and 
occupancy (RMSEψ) trends
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of benefit with 50% panels may reflect site fidelity, fixed at 100% 
in our simulations. By monitoring different transects in successive 
years, the number and distribution of individuals along surveyed 
transects varied interannually, potentially obscuring trends. White-
headed woodpecker do exhibit site fidelity (Garrett et al., 1996), 
so panel design benefits could trade-off with benefits of sampling 
the same sets of individuals in successive years. In reality, however, 
population processes (e.g., dispersal and turnover) could also ob-
scure trends. The extent of paneling needed to benefit power would 
therefore depend on levels of spatial versus temporal heterogeneity 
in population trends (Rhodes & Jonzén, 2011), the latter of which 
was omitted from simulations here. Additionally, panel designs 
could limit study of processes underlying occupancy dynamics, for 
example, colonization and persistence (Bailey et al., 2007).

4.3 | Study limitations

Our simulations did not include spatial or temporal stochasticity in 
population dynamics, individual movement between years, or behav-
ioral interactions between neighbors all of which could modulate oc-
cupancy estimates or trends (Reynolds, Wiens, Joy, & Salafsky, 2005; 
Sauer, Fallon, & Johnson, 2003; Warren, Veech, Weckerly, O’Donnell, 
& Ott, 2013). By not accounting for these realities, power estimates 
may be liberal, and therefore probably best used to inform a lower 
bound for sample size. Accordingly, we recommend ≥120 or ≥90 tran-
sects with single-survey or repeat-survey monitoring, respectively, of 
white-headed woodpeckers across our study region.

Our treatment of site fidelity, however, is conservative. For sim-
plicity, we simulated populations with 100% site fidelity and zero im-
migration or recruitment, and to avoid artifacts of these assumptions, 
analysis models assumed occupancy varied independently among 
years. In reality, models correctly specifying uncertainty arising from 
additional population processes (e.g., Royle & Kéry, 2007) could im-
prove power to observe trends (although with likely increased data 
demands). Models that correctly specify habitat relationships with oc-
cupancy could also help. Given the potentially counteracting features 
of simulations, we expect power estimates were sufficiently informa-
tive to compare alternative study designs.

Simulations ignored spatial variation in home range size, which 
can confound interpretation of occupancy estimates and trends 
drawn from repeat surveys (Efford & Dawson, 2012). Simulations in-
cluding such realities could further inform repeat-survey monitoring. 
Alternatively, single-survey monitoring would avoid this issue, and 
could be complemented with focused study of space use dynamics.

Our treatment of survey cost did not fully account for travel time 
among transects. We expect little difference in cost of repeating a 
survey versus surveying a new transect, but travel time could limit 
transect number more than length. To fully inform study design, bi-
ologists would need to attach costs to scenarios explored here. For 
white-headed woodpeckers, clustering transects with sufficient spac-
ing for statistical independence (e.g., 2–5 km assuming home ranges 
≤1 km radius) could reduce travel time, although potentially raising the 
need to account for spatial heterogeneity at coarser scales (e.g., among 
sub-regions).

F IGURE  9 Statistical power (percent 
simulations with 95% BCI <1) and trend 
estimation error (RMSE) for the repeat-
survey constant-p occupancy model 
under alternative sampling allocation 
strategies. Error is calculated relative to 
the actual abundance trend, λN = 0.98 
(RMSE = RMSEN). Strategies depicted 
involve monitoring rotating subsets of 
transects each year (bar color) or fewer 
points per transect (x-axis) in exchange for 
monitoring more transects. Parenthetic 
values indicate the total number of 
transects monitored over the 20-year study 
period
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F IGURE  10 Statistical power (percent 
simulations with 95% BCI <1) and trend 
estimation error (RMSE) for the single-
survey logistic regression under alternative 
sampling allocation strategies. Error is 
calculated relative to the actual abundance 
trend, λN = 0.98 (RMSE = RMSEN). 
Strategies depicted involve monitoring 
a rotating subsets of transects each year 
(bar color) or fewer points per transect 
(x-axis) in exchange for monitoring more 
transects. Parenthetic values indicate the 
total number of transects monitored over 
the 20-year study period

F IGURE  11 Statistical power (percent 
simulations with 95% BCI <1) and trend 
estimation error (RMSE) for the repeat-
survey constant-p model for scenarios that 
vary the proportion of transects surveyed 
a second time each year in exchange 
for monitoring more transects. Error is 
calculated relative to the actual abundance 
trend, λN = 0.98 (RMSE = RMSEN). 
Parenthetic values indicate the total 
number of transects monitored over the 
20-year study period
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4.4 | Additional considerations and broader 
implications

Agency biologists often conduct repeat surveys to estimate detect-
ability and thereby improve credibility of trend estimates. This strat-
egy potentially implies an overly rigid allocation of effort between 
sampling to inform occupancy versus detectability. Repeat surveys of 
mobile species may unwittingly focus effort toward tracking distribu-
tional shifts, which can be harder to observe and not necessarily more 
relevant to conservation than changes in abundance. Additionally, 
practitioners often discount the potential for detectability to change 
with changing abundance (e.g., Ahumada, Hurtado, & Lizcano, 2013; 
van Strien, van Swaay, & Termaat, 2013; Zielinski et al., 2013), which 
may limit explicit inference of abundance trends versus range dynam-
ics from occupancy-based trend estimates. Estimating detectability is 
only useful if doing so improves inference of underlying population 
processes or accounts for interannual variability in observer error. 
The former requires considering which processes can be more readily 
inferred by accounting for detectability at the scale it is measured. 
If instead biologists are solely concerned with controlling observer 
error, monitoring of population indices may be more cost-effective 
while providing equivalent or stronger inference of population change 
(Hutto, 2016; Johnson, 2008; Welsh et al., 2013).

Despite growing sophistication of occupancy models (Bailey, 
MacKenzie, & Nichols, 2014), heterogeneity arising from locally vary-
ing abundance and poorly defined home range boundaries (Efford & 
Dawson, 2012) will continue to challenge monitoring efforts, espe-
cially where funding constrains data and, consequently, model com-
plexity. Simulations can help explore our capacity for inference with 
models necessarily misspecified due to limited data. General power 
formulas available for occupancy models ignore spatial heterogeneity 
(Guillera-Arroita & Lahoz-Monfort, 2012; MacKenzie & Royle, 2005). 
Spatially explicit simulations therefore complement these tools for tai-
loring sampling designs to particular study systems.

Information on regional trends should be combined with in-
formation on various population parameters measured at differ-
ent scales to fully inform species conservation status (Nichols & 
Williams, 2006). For example, other studies currently underway 
examine forest management effects on white-headed woodpecker 
nest densities, nest survival, and habitat use (Mellen-McLean et al., 
2015). Statistical models can now integrate multiple sources of data 
to better inform parameter estimation (Dorazio, 2014; Nichols et al., 
2008). Simulations that explicitly and distinctly describe population 
from observation processes could inform sampling design to support 
these approaches.
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