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Abstract Wildfire is an ever present, natural process shaping
landscapes. Having the ability to accurately measure and pre-
dict wildfire occurrence and impacts to ecosystem goods and
services, both retrospectively and prospectively, is critical for
adaptive management of landscapes. Landscape vulnerability
is a concept widely utilized in the ecosystem management
literature that has not been explicitly defined, particularly with
regard to wildfire. Vulnerability more broadly is defined by
three primary components: exposure to the stressor, sensitivity
to a range of stressor variability, and resilience following ex-
posure. In this synthesis, we define vulnerability in the context
of wildfire. We first identify the components of a guiding
framework for a vulnerability assessment with respect to wild-
fire. We then address retrospective assessments of wildfire
vulnerability and the data that have been developed and uti-
lized to complete these assessments. Finally, we review the
modeling efforts that allow for predictive and probabilistic
assessment of future vulnerability. Throughout the synthesis,
we highlight gaps in the research, data availability, andmodels
used to complete vulnerability assessments.

Keywords Ecosystem goods and services .Wildfire
occurrence . Fire effects . Resiliency

Introduction

Wildfire is an ever present natural process shaping landscapes
in the USA. Although, relative to other agents, fire only rep-
resents a fraction of disturbances resulting in forest decline
over the past few decades [1, 2], it is a regular occurrence that
is expensive to control and often has negative impacts on
ecosystem goods and services [1, 3]. The number of large
wildfires (>400 ha) and area burned has increased in many
systems over the past 30 years as a result of past management
and warmer and drier conditions [1, 4–7]. Based on recent
climate projections, the trend towards more fires and area
burned is likely to continue (i.e., [8, 9]). Area burned, in and
of itself, has little meaning. The interaction of fire with
what it burns and the resulting impacts such as vegeta-
tion mortality or erosion are important. Although a few
regional assessments have been completed indicating an
increase in severity over the same time period (e.g., [10,
11]), a broader scale assessment of severity for the en-
tire USA shows no significant increase [12].

Fire management remains a key driver of broader federal
policy for land management agencies in the USA because
wildfire is a Bwicked^ problem in the rapidly expanding wild-
land urban interface [4, 5]. For example, the National
CohesiveWildland Fire Management Strategy recognizes that
fire is a necessary natural process in many ecosystems and
strives to reduce conflicts between fire-prone landscapes and
people [13]. The ability to accurately measure and predict
wildfire occurrence and impacts to ecosystem goods and ser-
vices and their post-fire response is critical for adaptive man-
agement of landscapes. Vulnerability assessments have most
often been completed retrospectively [14••]. They are com-
pleted after a wildfire with the goal of understanding the rela-
tionships between pre-fire environmental conditions, ob-
served fire behavior, and post-fire effects. These assessments
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are necessary for the development and validation of both data
and predictive models that can be utilized to project future
vulnerability. Given the considerable development of
landscape-scale datasets and models of fire behavior and ef-
fects in the USA, there are now both data and foundation
research to predict future vulnerability. Predictive vulnerabil-
ity assessments use simulated fire behavior and effects to de-
termine which ecosystem goods and services are the most
vulnerable to future wildfire in order to identify which adap-
tive management strategies will reduce undesirable conse-
quences, such as loss of homes or timber resources, dimin-
ished water quality, or reduced economic income from tour-
ism. These mitigation strategies can then be incorporated into
land management planning to work towards achieving fire-
resilient landscape and communities.

In this synthesis, we first identify the components of a
guiding framework for a vulnerability assessment with respect
to wildfire (Fig. 1). We then address retrospective assessments
of wildfire vulnerability and the data that have been developed

and utilized to complete these assessments. Finally, we review
the modeling efforts that allow for predictive and probabilistic
assessment of future vulnerability. Although our synthesis uti-
lizes examples, data and models specific to the USA, the
guiding framework is applicable globally.

Conceptual Framework

Landscape Vulnerability as a Concept

Landscape vulnerability is a concept widely utilized in the
ecosystem management literature (e.g., [15, 16]), but it has
not been explicitly defined, particularly with regard to wild-
fire. It draws from ecological vulnerability, which has been
characterized in myriad ways and has been defined by the
international climate change community as the extent to which
a natural or social system is susceptible to sustaining damage
from a stressor [17]. Vulnerability has three primary
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Fig. 1 Idealized vulnerability assessment framework. To characterize
vulnerability of a landscape to fire requires an assessment of exposure,
sensitivity and resilience. Exposure of ecosystem goods and services
(EGS) to wildfire must be measured or predicted and relates to the fuels,
topography, and fire climate. Sensitivity refers to the first- and second-
order fire effects, which are related to intensity, enabling the construction
of vulnerability curves to identify critical thresholds to EGS. Resilience

incorporates various scenarios to explore innovative approaches to miti-
gate negative impacts of fire on EGS; this enables the achievement of fire-
adapted communities and landscapes. In a retrospective assessment, the
components of the vulnerability assessment would be measured after a
wildfire occurs. In a predictive assessment, the components would be
modeled for potential future wildfire
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components: exposure to the stressor, sensitivity to a range of
stressor variability, and resilience following exposure, which
is also referred to as adaptive capacity [14••, 18, 19] (Fig. 1).
Landscapes can vary in size and space but are generally char-
acterized and quantified at the spatial scale of management for
specific ecosystem goods and services. Thus, for the purposes
of this review, we define landscape vulnerability as the prob-
ability of a landscape sustaining stressor-induced damages
that impact ecosystem goods and services by exceeding a
specified damage threshold.

Quantification of landscape vulnerability must explicitly
recognize the valuation placed on landscapes by humans, as
characterized in ecosystem goods and services, by developing
goals and objectives for mitigating vulnerability that both pri-
oritize some ecosystem functions over others and identify the
conditions that facilitate these functions. For example, federal
fire and land managers responded to evidence of the loss of
ecosystem function associated with the US fire suppression
program by trying to reintroduce fire and return landscapes to
historical conditions [20, 21]. However, because global cli-
mate change and land cover change associated with land use
and invasive species makes it unlikely that historical condi-
tions can be duplicated in the future [22, 23], more recent
work has suggested focusing on understanding historical pro-
cesses to manage for an alternative future state that may be
more desirable to maximize the production of the top priority
ecosystem goods and services [14••, 24] (Fig. 2). Thus, a
landscape vulnerability assessment will assess the landscape
exposure to a stressor, the sensitivity of the ecosystem and its
components to the impacts of the stressor in the context of
maintaining the ability to produce key ecosystem goods and
services immediately following the stressor, and the resilience
of the system specifically in sustaining production of key crit-
ical ecosystem goods and services into the future (Fig. 1).

Defining and Quantifying Vulnerability in a Wildfire
Context

The terms exposure, sensitivity, and resilience are widely de-
scribed in the vulnerability literature [19]. In this review, we
sought to couch the discussion of these descriptors within the
context of existing applied fire science research. Conceptually,
assessing landscape vulnerability to wildfire requires charac-
terizing and quantifying each of the three components of vul-
nerability. To quantify vulnerability also requires defining
metrics of measurement. Exposure in this context is defined
by the occurrence of a wildfire across a portion or the entirety
of an area that is large enough to provide ecosystem goods and
services in a management context. This is quantified from
observations of fire occurrence and extent, often referred to
as area burned. Wildfire exposure in a retrospective assess-
ment would be a binarymeasure, burned or not; in a predictive
assessment, this would be a probabilistic estimate of wildfire.

Sensitivity refers to the first-order effects of a wildfire on
the ecosystem and whether those effects ultimately impair the
production of ecosystem goods and services. First-order fire
effects are the direct result of fire intensity, which is defined in
several different ways based on units of energy released dur-
ing combustion over a given spatial or temporal extent and the
completeness of the combustion process [25]. Sensitivity can
be quantified as biomass consumed or smoke by-products
emitted (e.g., [25, 26]), and the impairment of physiological
function, which can be quantified through changes in net pho-
tosynthesis, primary productivity, or plant mortality [27].
Sensitivity will be dependent upon the ecosystem good or
service of interest. For example, a watershed will require
enough canopy cover to maintain shade to keep the water
temperature below a critical threshold conducive to salmon
fry [28]. If a wildfire reduces the cover below the critical
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Fig. 2 Conceptual framework for identifying management strategies
based on prioritized ecosystem goods and services (EGS),
understanding that the ecosystem produces specific hypothetical EGS
across defined ranges of fire effects (EGS1-4). The historic range of
variability supported EGS1 and EGS2 initially, and currently supports

EGS2-3, while each future potential trajectory will support different
EGS combinations. Continuing on the current trajectory (i.e., no change
in management strategy) supports EGS3 then EGS4, a targeted
management strategy supports EGS2-3, while restoration of the historic
range of variability supports EGS1-2
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threshold through extensive scorching, torching, or tree mor-
tality (all first-order fire effects), it has temporarily rendered
that stretch of stream unusable for salmon spawning,
suspending that ecosystem service. In contrast, certain avian
species have evolved to flourish in recently burned land-
scapes, so a reduction in canopy cover below a threshold
results in a potential gain in ecosystem services [29].

In a landscape vulnerability assessment, resilience is
linked to second-order fire effects and downstream con-
sequences. In a managed landscape, it is the product of
mitigating exposure to wildfire and adapting the system
to a broader sensitivity range through management ac-
tions. In the example above, resilience is the ability of
the watershed to regenerate enough canopy cover to
resume supporting the salmon run before it is rendered
permanently unusable. Actions facilitating resilience in
this case may include utilizing forest management prac-
tices designed to reduce fire intensity and effects, or
supporting the establishment of fire-sprouting species
that will rapidly regenerate canopy cover in the post-
fire environment. Resilience, by definition, requires
identification and characterization of the multitude of
dynamic and stochastic agents of change in a landscape
that interact with fire, including climate variability and
change, land cover change, invasive species, humans,
and earth system processes.

Retrospective Vulnerability Assessment

Measuring Exposure Through Wildfire Occurrence
and Extent

Wildfire occurrence is defined as the number of fires
over a set period of time for a given location [30]. In
the context of a vulnerability assessment, it is necessary
to also know the spatial extent of a wildfire to under-
stand how it intersects with ecosystem goods and ser-
vices. Wildfire occurrence is a stochastic event depen-
dent on the availability of an ignition source (human or

naturally caused) and fuels. Wildfire growth further de-
pends on nonstatic and interrelated fuels, topography,
and weather [31]. A number of methods exist for mea-
suring fire occurrence and are dependent upon the time
period in question. For fires occurring prior to the writ-
ten record, paleorecord proxies such as tree-rings and
sediment-charcoal cores can be used to reconstruct fire
occurrence and area burned (e.g., [32]). This is an im-
portant data source, especially in ecosystems that do not
experience frequent fire and are misrepresented with
contemporary methods. Historical fire occurrence data
can also be compiled through anecdotal sources such
as interviews, newspaper articles, and personal diaries
[33] or inferred from land survey maps [34] .
Paleorecords and historical accounts often cannot pin-
point the location of a fire ignition nor the exact fire
extent.

Contemporary fire occurrence and extent is typically
mapped based on direct observation and remote sensing
(Box 1; Table 1; Fig. 3). Federal agencies within the
USA maintain wildfire reports for all fires burning un-
der their jurisdiction, or for which they provide mutual
aid. The extent of these fires is mapped using handheld
GPS units or aerial reconnaissance over multiple days to
map daily growth and a final area burned [35]. Non-
federal landholders also maintain information on fire
start locations and extent, but this is not a coordinated
effort and the data is cumbersome to compile [36].
Spaceborne remote sensing offers spatially continuous
fire detection and observation at sub-daily temporal res-
olution without jurisdictional barriers. The moderate res-
olution imaging spectroradiometer (MODIS) [37], visi-
ble infrared imaging radiometer suite (VIIRS) [38, 39],
and Landsat operational land imager (OLI) [40] are ex-
amples of such sensor platforms. Each sensor platform
produces a slightly different fire occurrence and extent
database dependent upon its frequency of acquisition for
a given location, the spectral wavelengths it collects
data over, the spatial resolution of data collection, and
historical availability of the sensor.

Table 1 Type, frequency and data availability for five common geospatial fire occurrence and extent data sources

Data source Data type Frequency Data availability Data products

FOD Point Annual, with a 1- to 2-year lag
in data availability

1992-prior season Ignition location; discovery date; fire size

MTBS 30 m raster Annual, with a 1- to 2-year lag
in data availability

1984-prior season Burned area (extent); both continuous and
thematic burn severity

MODIS 1 km raster 4× a day 2001-current Active fire (occurrence); burned area
(extent), fire intensity (FRP)

VIIRS 375 and 750 m rasters 2× a day 2012-current Active fire (occurrence); fire intensity (FRE)

LANDSAT-8 30 m raster 16 days 2015-current Active fire (occurrence)

FRP fire radiative power, FRE fire radiative energy
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Box 1. Geospatial Data Sources of Contemporary Fire
Exposure

In the USA, multiple geospatial data sources of contemporary fire
occurrence have been compiled and are publically available. These
include the national Fire Occurrence Database (FOD) [36], Monitoring
Trends in Burn Severity program (MTBS) [41], and the suite of Active
Fire data products (http://activefiremaps.fs.fed.us/gisdata.php, Table 1,
Fig. 3). The FOD is the most complete accounting of wildfire ignition
locations across the USAwith over 1.7 million fires mapped and
attributed with, at a minimum, ignition location, discovery date, and
final fire size [36]. MTBS is a joint effort between the USDA Forest
Service and the US Geological Survey to map the extent of all large
wildfires and prescribed fires (>405 ha in the west and >202 ha in the
east) [41]. The Active Fire products identify pixels where thermal
anomalies consistent with fire are occurring at the time of data
acquisition by one of the three primary sensors (MODIS, VIIRS, and
Landsat 8) based on automated detection algorithms [37, 39].

Measuring Sensitivity Through Range of Variability
of Fire Effects

Sensitivity of the landscape can be quantified in terms of the
effects that wildfire has on key ecosystem goods and services.
For example, these could include the role that vegetation has
on controlling erosion and sediment transfer to streams and
rivers; the quantity and quality of water available for reser-
voirs, irrigation, and industry; the ecosystem’s decomposition
and nutrient cycling processes such as photosynthesis, nitro-
gen fixation, and carbon sequestration; and access to recrea-
tion and sites of historical and cultural significance [14••]. As
ecosystem goods and services are also impacted by second-
order fire effects and their cascading consequences (e.g.,
mudslides occurring days to weeks following wildfires), ad-
dressing the associated sensitivity fundamentally requires a
two-step process: (1) connecting wildfire intensity (i.e., expo-
sure) to first-order fire effects, and (2) identifying which of
these first-order effects impact downstream processes (Fig. 1).
As fire intensity is rarely known, most assessments use retro-
spective reconstruction to infer intensity and effects [14••].

To quantify sensitivity, metrics of fire intensity must first be
predictable from fuels in order to quantify first-order fire ef-
fects [27]. One option is to use the measures of fire radiative
power (FRP) and the associated time-integrated fire radiative
energy (FRE), as numerous small-scale experimental observa-
tions of FRE have demonstrated a generally linear relationship
to biomass consumed [42–45]. Such metrics normalized per
unit area (i.e., FRE density (FRED), MJ m−2) are particularly
useful to bridging the gap between research and fire manage-
ment as FRED and the energy release component product
calculated within the US National Fire Danger Rating
System [46] are equivalent metric and English quantities, re-
spectively. Several studies have used FRE, FRED, or the in-
stantaneous FRP as metrics to describe fire intensity [27, 43,

47]. Across landscapes, FRE (or FRED) must be calculated
from integration of observed FRP over time; this is chiefly
accomplished through remote sensing of thermal radiation
on the MODIS and VIIRS platforms. As has been widely
noted, this method is highly circumspect due to the low tem-
poral return rate (e.g., for MODIS, there are only four obser-
vations per 24-h day), the viewing angle of the sensor, and the
often coarse scale of the data [48, 49]. As such, there has been
limited validation ofMODIS FRP products as being the direct
product of fuel loading across large spatial extents, and/or as
direct predictors of landscape ecological response (but see
[50]). There remains a formidable knowledge gap regarding
fuel loading and condition (mixtures, moisture contents, ar-
rangements) and the resultant fire intensity, the specific phys-
iological response of plants to differential fire intensity levels,
and how that response scales across landscapes over time and
space to affect ecosystem function [27].

The focal point of most retrospective research quantifying
sensitivity has been on development of Bburn severity^ data-
bases. Despite the development of these databases, this term is
poorly defined and the metrics of quantification are not agreed
upon [51•, 52–54]. However, the availability of the
multidecadal Landsat sensor archive yielded the development
of spectral indices, such as the normalized burn ratio (NBR)
and its derivatives, that are positively correlated to ground
assessments of various first-order fire effects [55–58]. These
indices, in turn, were utilized to create a historical burn sever-
ity archive for the USA under the MTBS program [41].
MTBS has considerable limitations for assessing the range
of variability of fire effects since neither the classified product
nor the raw spectral indices are consistently linked to specific
ecophysiological fire effects [51•, 59]. However, there has
been considerable recent effort to identify mechanistic link-
ages between MTBS-equivalent products and specific eco-
physiological and landscape metrics that are relevant to eco-
system services for individual fires (or small groups of fires),
including forest structure, canopy cover, refugial patches, bio-
mass, tree mortality, and soil hydrophobicity [60–63].
Additionally, a few initial efforts have been made to quantify
the relationship of ecosystem goods and services to fire effects
utilizing burn severity atlas data (e.g., [63–65]).

As MTBS is a proxy database without well-defined
mechanistic linkages to specific ecophysiological fire
effects [51•], and the efforts to relate MTBS products
to ecophysiological metrics across a wide range of fires
are recent enough that they are not yet being widely
applied (e.g., [66]), it is not surprising that there have
been relatively few retrospective assessments of land-
scape sensitivity specifically targeting ecosystem goods
and services. The primary approaches to retrospective
analysis have been through field sampling as represen-
tative of the landscape (e.g., [67]) or macro-scale stud-
ies utilizing burn severity atlases and addressing the
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range of variability in proxy spectral indices such as
dNBR and RdNBR (e.g., [68]), drivers of spectral index

variability (e.g., [10, 69, 70]), and trends in spectral
indices or their undefined severity classes (e.g., [11,

Fig. 3 Fire occurrence as
mapped by MTBS burn
frequency (a), FOD annual
ignitions (b), and MODIS mean
annual active fire density (c)
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12]). Landscape sensitivity of ecosystem goods and ser-
vices specifically as a function of fire effects are subse-
quently not yet being measured.

Measuring Landscape Resilience to Wildfire

Resilience in the ecological literature has undergone a trans-
formation of perspective and definitions since its original in-
troduction four decades ago [71]. For landscapes where wild-
fire is a stressor, resilience is the maintenance or restoration of
critical processes that support key ecosystem goods and ser-
vices, with some occurrence and intensity of fire often re-
quired to achieve resilience [72]. This may include frequent
fire to facilitate carbon uptake and sustain selective timber
harvest in systems with frequent low severity fire [73, 74],
patches of stand replacing fire that support key biodiversity
markers [75], or unburned patches within the fire matrix that
both act as refugia and preserve soil and hillslope integrity to
maintain downstream water quality [60, 76].

Much research has focused on monitoring the post-fire
Brecovery^ of burned landscapes through field plot-based ef-
forts that primarily quantify vegetation succession and attempt
to predict when a landscape has returned to its pre-fire Bstate^
[77]. However, to quantify resilience across a landscape, the
ideal approach would utilize a time series of remotely sensed
indices transformed to fire effects coupled with associated
parameters and thresholds for specific ecosystem goods and
services such that the goods and services produced by the
landscape would be based on the history and trajectory of
the indices [14••] (Fig. 2). Only recently have archives of
remotely sensed data begun to be transformed into time series
of spectral information that could be utilized for this purpose.
To date, a few, relatively course scale studies have assessed
reduced productivity as a result of wildfire and the recovery to
a pre-fire level (e.g., [77]). The recent development of the
LandTrendr tool [78] provides an example of a methodology
both for assessing fire impacts on ecosystem services across
landscapes at a higher resolution for management (i.e.,
Landsat) and also for developing true a priori vulnerability
indices (e.g., [79]). LandTrendr-based analyses of forest resil-
ience have primarily focused on carbon stocks and non-fire
related forest productivity [1, 80] but hold considerable poten-
tial for resilience analysis assessing ecosystem goods and ser-
vices more broadly.

Predictive Vulnerability Assessment

Predicting Exposure Through Wildfire Occurrence
and Extent

Exposure to wildfire can be realized as either ignition proba-
bility or burn probability, where ignition probability is most

often statistically derived and burn probability is simulated
[81]. Predicting fire occurrence generally follows one of three
approaches: forecasts, probabilistic models, or predictive
models. Because forecasts are most often used for decision
support to enable proactive planning to determine resource
needs for suppression activities (e.g., [82]), they are not appli-
cable to vulnerability assessment prediction and will not be
discussed. Probabilistic and predictive models can be used for
near-term or future analyses. Near-term predictions rely heavi-
ly on recent historic weather and ignitions coupled with cur-
rent vegetation, whereas future predictions are more complex
requiring forecasts of how ignition likelihood (human and
natural), climate, and vegetation are expected to change over
the period assessed.

Spatial and temporal patterns of historical ignition data can
be used to statistically predict and map the probability of near-
term ignitions occurring. Statistical models typically include
both biophysical (e.g., climate, vegetation, topography) and
social drivers (e.g., population density, distance to roads) of
past wildfire ignitions to predict future ignitions [83–85].
Some research differentiates between ignition probability
and the probability of a large fire [83, 85], which can be an
important distinction as the vast majority of fires are quite
small and have minimal impact on the landscape. Near-term
burn probability, the probability of a wildfire burning a given
point on a landscape, can be simulated using data characteriz-
ing current forest structure, fuel loading and moistures, topog-
raphy, and past weather and ignition locations [86, 87, 88•].
The most frequently used wildfire simulation systems in the
USA to predict burn severity are based on semi-empirical
models of surface fire spread, crown fire initiation, propaga-
tion, and spread [89–92]. As with any application of models,
wildfire simulation system outputs are a probabilistic repre-
sentation of a very complex phenomena which are subject to
sources of errors not limited to input data, applicability of use,
and model accuracy [93–95]. These sources of error can lead
to both under- and overprediction of potential fire behavior,
and therefore spread, impacting burn probability outputs.
With careful calibration of both input data and the simulation
parameters, an experienced user can minimize these errors.

Predictive modeling over longer timescales focuses on un-
derstanding drivers of fire activity utilizing model projections
of the relevant aspects of global change to predict a range of
future fire occurrence and extent across regional to global
scales. Climate and land use-land cover change are the prima-
ry drivers of such modeling efforts, although it is recognized
that human migration and settlement patterns also play a role
but are difficult to predict [23, 96, 97]. Projected future cli-
matic conditions from global climate models cover a range of
potential future emissions scenarios developed by the
Intergovernmental Panel on Climate Change that integrate
both human population trajectories and policies on fossil fuel
combustion; as such, the downstream efforts to model future
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fire activity pass through the range of both potential outcomes
and uncertainties to create an envelope of potential fire extent.
These models are either mechanistic, accounting for dynamic
feedbacks in vegetation growth and distribution, or empirical,
based on historical statistical relationships that assume station-
arity [98••]. Because of the large number of uncertainties in
the parameterization of both types of models, predictions of
future fire activity several decades out have limited utility for
assessing landscape vulnerability as compared to the near-
term simulation models.

Predicting Sensitivity Through Range of Variability
of Fire Effects

Fire modeling systems used to predict fire intensity and effects
fall within three categories: mechanistic physics-based, semi-
empirical (mentioned above), or process-based. Mechanistic
physics-based modeling systems will not be discussed in this
synthesis because they are spatially limited [99, 100]. Within
wildfire modeling systems, fire intensity is represented as
fireline intensity or flame length; these two measures of inten-
sity are interrelated and can result in different estimates de-
pending on the models used within the system [101, 102]. Fire
intensity is an input into empirical and process-based models
employed within fire modeling systems to predict first-order
fire effects on tree mortality, soil heating, fuel consumption,
and smoke production [103–107]. Second-order fire effects
such as air quality and smoke dispersion, and post-fire erosion
and sedimentation can be simulated using process-based
models [108–111]. The fire effects models utilize fundamental
fire behavior and individual tree approaches to roughly predict
the proportion of fire effects across macro-level management
units based on key assumptions [112].

Although none of the landscape-scale fire modeling systems
directly output fire effects, simulated or expert-defined first- and
second-order fire effects can be coupled with simulated intensi-
ties to make these predictions, which is common in wildfire risk
assessments (Box 2). This coupling of landscape fire intensity
and fire effects has been completed to predict the sensitivity of
large trees, wildlife habitat, carbon pools, and sediment yield to
wildfire exposure [113–116]. When no direct correlation be-
tween fire intensity and effects exist, a Bresponse function^
can be used. A response function is an expert-defined function
used to estimate the relative change of ecosystem goods and
services when impacted by wildfire [117, 118]. Response func-
tions have been used to predict the sensitivity of ecosystem
goods and services such as vegetation conditions, watershed
functionality, wildlife habitat, and recreation to wildfire [3,
117, 119, 120, 121••]. One of the largest challenges with the
response function approach is the characterization of non-
market ecosystem goods and services such as recreation or veg-
etation diversity in terms of their response to wildfire and how
society values them [122].

In order to predict future fire intensity and effects, wemust be
able to predict changes in vegetation, climate and fire exposure.
State and transition simulation models (i.e., [123]), mechanistic
models (i.e., [124]), and forest growth models [125] can be used
to predict changes to vegetation and fuels under future climates
and management actions, but do not explicitly predict exposure
to wildfire. Prognostic fire spread models (i.e., [126, 127]) with-
in process-based dynamic global vegetation models (DGVMs)
[128, 129] simulate the effects of changes in both climate (igni-
tion sources as well as weather) and vegetation on fire behavior
and effects. Most DGVMs provide coarse results unsuitable to
land management planning, but they provide important infor-
mation about future trends under various climate scenarios
[130]. The ability to simulate spatially explicit estimates of ex-
posure and sensitivity under future potential climates and vege-
tation at a resolution usable for management purposes in a single
system is lacking in the field.

Predicting Landscape Resilience to Wildfire

To predict landscape resilience, we must be able to simu-
late the maintenance or restoration of critical processes
that support key ecosystem goods and services following
fire. Resilience can be achieved through innovative ap-
proaches and technologies designed to mitigate negative
impacts of wildfire through actions such as fuels manage-
ment, material sciences, and education. When considering
landscape resilience, fuel treatments can be implemented
to mitigate exposure to wildfire and to create systems
adapted to a broader sensitivity range to support key eco-
system goods and services. Fuel treatments are designed
to reduce or redistribute surface and canopy fuels to alter
fire behavior and effects [131–133]. Implementation of
fuel treatments is typically done to aid in fire control (stra-
tegically placed to reduce hazard) or for ecosystem
maintenance/restoration (designed to sustain fire-prone
ecosystems by treating fuels so fire can be reintroduced)
to facilitate resilience to wildfire [132]. Regardless of the
treatment strategy, wildfire simulation models can be used
to test the impact of fuel treatments on near-term exposure
and sensitivity in the same way mentioned above. For
example, Ager et al. [116] used simulation modeling to
compare disparate spatial treatment patterns and treatment
intensities on large tree survivability. However, this type
of modeling does not predict the trajectory of the land-
scape to sustain key critical ecosystem goods and services
in the long term rather the immediate exposure and sensi-
tivity. Predicting the trajectories of landscapes and their
ability to support ecosystem goods and services under
various planning scenarios requires more integrated
modeling approaches that scale system functions from nu-
trient cycling all the way up to global-level atmospheric
circulation and climate change (e.g., BioEarth [134]).
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Box 2. Wildfire Risk and Vulnerability Assessments

The wildfire risk assessment framework, described in detail by Scott et al.
[135], is ideal to predict the near-term exposure and sensitivity aspects
of a vulnerability assessment [81]. Although the terminology is dif-
ferent, the core concepts are the same. Awildfire risk assessment is
implemented in a geospatial context which explicitly considers the
location of highly valued resources and assets (ecosystem goods and
services) with respect to fire likelihood (exposure) and intensity and
susceptibility (sensitivity). Wildfire risk assessments consider both the
benefits and losses associated for a given time period [30]. Although
not an explicit part of the wildfire risk assessment framework,
resiliency can be assessed by comparing the outcomes of different
management actions on the resulting exposure and sensitivity. In a
broader context, integrated fire vulnerability assessments will likely
consist of multiple layers, with weights corresponding to data uncer-
tainty, that are linked through feedback processes and ultimately pro-
vide both a single vulnerability score and a range of potential vulner-
ability based on carrying through of uncertainty [14••] (Fig. 1). For
example, such data layers could include surface fuel loading, predictive
fuel moisture contents, and community perceptions data that all occupy
a range of associated uncertainties.

Of the fire modelling systems available, the large fire simulator (FSim)
[88•] is the most robust for simulating burn probability and fire inten-
sity lending itself to wildfire risk assessments (i.e., [135]). FSim
models the spread of multiple fires under varying weather conditions,
representing possible weather scenarios for the next season, across
many seasons and includes an algorithm for suppression. The resulting
burn probability map is an annualized representation of the likelihood
of fire burning any point on the landscape thus representing exposure.
Fire intensity is output as the probability of burning within set flame
length categories. Susceptibility is quantified by applying simulated
first- or second-order fire effects or response functions to fire intensity
estimates for an entire landscape, as well as individual highly valued
resources and assets. Relative contribution (spatial extent) and relative
importance (weights) are determined to articulate preference and
compare sensitivity when multiple highly valued resources and assets
exist [121••, 135].

Conclusion

Assessing landscapevulnerability towildfire includesmeasuring
or predicting the landscape exposure towildfire, the sensitivity of
the ecosystem and its components to wildfire impacts in the con-
text of maintaining the ability to produce key ecosystem goods
and services immediately following fire, and the resilience of the
system to sustain key critical ecosystemgoods and services in the
long term. This can be accomplished a priori utilizing existing
data or a posteriori with modeling. Measuring and predicting
landscape exposure towildfire is relatively straightforward using
remotely sensed data and simulation modeling. Characterizing
landscape sensitivity and resilience is more complicated.
Measuring landscape sensitivity is theoretically possible through
burn severity atlases; however, mechanistic linkages between
burn severity products and ecophysiological and landscape met-
rics must be defined and quantified. Predicting landscape sensi-
tivity to wildfire involves coupling landscape fire modeling

simulation systemswith first- and second-order fire effectmodels
or expert opinion. LandTrendr and similar remote sensing-based
monitoring toolsholdconsiderablepotential forquantifyingland-
scape resilience over time, but much research is needed in this
field.Predicting the trajectories of landscape resilience towildfire
and their ability to support ecosystem goods and services will
requiremoreintegratedmodelingapproaches thancurrentlyexist.

Quantifying landscape vulnerability requires relatively ac-
curate spatial data at the scale of management [16]. These data
are used to model the probability of possible future harm [18,
19], so any errors in the data are extrapolated through models
and any information lost through coarsening of spatial resolu-
tion lead to gaps in knowledge. While spatial data can be
acquired through field observations (i.e., mapping) and statis-
tical extrapolations and simulations (i.e., modeling), the most
common source for landscape-scale data is remote sensing.
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