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ABSTRACT 
 

Land managers need cost-effective methods for mapping and characterizing fire fuels quickly and accurately. The 
advent of sensors with increased spatial resolution may improve the accuracy and reduce the cost of fuels mapping. 
The objective of this research is to evaluate the accuracy and utility of imagery from the Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (ASTER) satellite and gradient modeling for mapping fuel layers for 
fire behavior modeling within FARSITE and FLAMMAP. Empirical models, based upon field data and spectral 
information from an ASTER image, were employed to test the efficacy of ASTER for mapping and characterizing 
canopy closure and crown bulk density. Surface fuel models (NFFL 1-13) were mapped using a classification tree 
based upon three gradient layers; potential vegetation type, cover type, and structural stage.  
 

INTRODUCTION AND BACKGROUND 
 

Wildland fire is an important issue facing local and regional land managers in the United States. Fires occurring 
in many parts of the western United States today are far more severe than fires that occurred before the suppression 
era (Arno and Brown, 1989; Hessburg et al. 2000). Increased fire size and severity coupled with an increase in the 
number of people living in the wildland-urban interface has resulted in millions of dollars of damage to property and 
loss of life throughout the western United States in recent years. In 2002, federal agencies spent an estimated $1.6 
billion on fire suppression (National Interagency Fire Center, 2003). As human populations move closer to the edges 
of wildlands, their lives and property become increasingly threatened by wildfire. In order to reduce fire risk to 
people and their homes, land managers must prioritize areas for fire mitigation and hazardous fuels reduction. In 
2000, the US Department of Agriculture teamed with the Department of Interior and the National Association of 
State Foresters to develop the National Fire Plan (www.fireplan.gov). Initiatives such as the national fire plan 
Recent federal initiatives provide funding to state and local governments that develop plans for identifying and 
mitigating hazards associated with wildland fire in the urban interface. Along with post-fire rehabilitation and 
maintaining firefighting preparedness, the goals of the National Fire Plan include reducing fuels in at-risk areas, 
particularly in and around the wildland urban interface (Bisson et al., 2003). Each year, the National Fire Plan 
provides funds to local fire districts to increase fire suppression capabilities and implement fuels reduction projects 
(USDA, 2000). In order to utilize monies from the National Fire Plan efficiently, land managers need cost-effective 
methods for mapping and characterizing fire fuels quickly and accurately. Some of the most potentially useful 
approaches for accomplishing this involve the integration of remote sensing (RS), Geographic Information System’s 
(GIS), field data and gradient modeling. Such analyses could provide consistent maps of fire fuel conditions across a 
diversity of land ownerships.  



 
Fuel Mapping 

The type, composition, and distribution of fuels (Chuvieco and Congalton, 1989) is one of the most important 
factors influencing fire hazard and fire risk. Wildland fuels are typically divided into three strata: ground fuels, 
surface fuels, and crown fuels (Pyne et al., 1996). Ground fuels consist of roots, duff, and buried woody debris. 
Fires burning in this stratum usually exhibit slow rates of spread. Surface fuels are composed of leaf litter, coarse 
woody debris, seedlings, saplings, and herbaceous vegetation. Most wildland fires start in, and are carried by, the 
surface fuel strata. Overstory trees and shrubs comprise the crown fuel strata. Fires burning in the crown fuel strata 
are often extremely intense and nearly impossible to control (Pyne et al., 1996). Since fuel stratum relationships are 
extremely complex, fire managers often describe fuels by grouping vegetation communities, based upon similar 
potential fire behavior, into fuel types (Riano et al., 2002) or fuel models (Anderson, 1982). However, since the 
distribution and accumulation of fuels  is highly variable (Brown, 1979) and, in forested areas, highly dependent 
upon vegetation type as well as stand history (Keane et al., 2001; Brandis and Jacobson, 2003) fuel quantity and 
distribution are not directly related to fuel types (Pyne et al., 1996). 

Field Mapping of Fuels: Fuels were typically mapped through extensive field inventory prior to the 
development of remote sensing technologies (Miller et al., 2003). Although field inventories of fuels were 
successful, the development of remote sensing technologies reduced the cost and time required to map fuels on the 
ground (Keane et al., 2001). Remote sensing technology also has the potential to update fuel maps quickly in areas 
where conditions are dynamic due to logging, fire, or other changes. 

Remote Sensing of Crown Fuels: Traditionally, fire-related canopy variables such as crown bulk density, crown 
closure, and canopy height were mapped based upon aerial photography interpretation and field data (Riano et al., 
2003). More recently empirical methods, which are less labor intensive, have been used to estimate these variables 
from satellite sensors such as Landsat TM and SPOT (Systeme Probatoire D'Observation de la Terre) HRV (high 
resolution visible) (Riano et al., 2003). Franklin et al. (2003) mapped various stand attribute classes, including 
canopy height and crown closure, through the classification of spectral and textural information derived from 
Landsat 5 data. Miller et al. (2003) successfully mapped structural stage classes in Arizona by running Landsat TM 
data through a clustering algorithm. 

Remote Sensing of Surface Fuels: The inability of optical sensors, such as Landsat TM and MSS, to penetrate 
the forest canopy (Miller et al., 2003) limits their utility for mapping surface fuels (Keane et al., 2002). As a result, 
most studies using remote sensing to characterize surface fuels first classify an image into vegetation categories and 
assign fuel types or fuel models to each category (Keane et al., 2001). Chuvieco and Salas (1996) characterized fuel 
types through the classification of Landsat Thematic Mapper (Landsat TM) data. Chuviceo and Congalton (1989) 
and Castro and Chuvieco (1998) used similar methods to map fuel types in Spain and Chile, respectively. Wilson et 
al. (1994) applied maximum likelihood decision rules to a Landsat Multi-Spectral Scanner (Landsat MSS) image to 
directly classify fuel types across Wood Buffalo National Park, Canada. Riano et al. (2002) improved a fuel type 
classification by incorporating two seasonal Landsat TM images, to account for phenological differences in 
vegetation, into a classification algorithm. Hyperspectral remote sensing has also been used to map fuel types and 
vegetation moisture content for a chaparral community in Southern California (Roberts et al., 1998). 

Gradient Modeling of Fuels: Gradient modeling refers to the use of environmental gradients (topographical, 
biogeochemical, biophysical, and vegetational) to model the occurrence of natural phenomena (Keane et al., 2002). 
This approach has been used with moderate success in estimating fuel types and fuel loading. Environmental 
gradients such as topography, moisture, and time since last burn have a large impact on fuel loading (Kessell, 1979). 
High fuel loading, for example, can be partially explained by lower decomposition rates (characterized by moisture 
and temperature gradients) and a long time interval since the last fire (Keane et al., 2001). Gradient modeling has 
been used to model fuel characteristics in Glacier National Park, Montana (Kessel, 1979).  

Integrated Fuels Mapping: The integration of remote sensing and gradient modeling may also increase the 
accuracy of fuels mapping projects. For example, Keane et al. (2002) integrated remote sensing and gradient 
modeling to map fuels across the Gila National Forest in New Mexico. This approach, termed the ‘vegetation 
triplet’, incorporates three layers: potential vegetation type (PVT), cover type (CT), and structural stage (SS). PVT is 
a site classification based upon the climax vegetation that would be found on a site in the absence of disturbance 
(Keane et al., 2002; Smith et al., 2003). CT describes the dominant species found on a site, and SS refers to the 
current canopy structure of a site. PVT is directly related to the biophysical setting of a site, which ultimately 
determines the site’s productivity and decomposition rates, and therefore has a large impact on fuel characteristics 
(Keane et al., 2002). CT is important for fuels mapping because dead woody debris and litter are directly related to 
the dominant tree species found on the site (Keane et al., 2002). The potential of a surface fire spreading to the 
crown is highly dependent upon the vertical structure of the stand, which is described by SS. The triplet approach 



has been used to assess the hazard of forest disease outbreak, and vulnerability to fire in the Columbia basin 
(Hessburg et al., 2000); it has been used in the Gila National Forest and the Selway-Bitteroot Wilderness, to map 
fuels and input layers required to run FARSITE (Keane et al., 2001; Keane et al., 2002). 

Future of Fuels Mapping: Remote sensing based fuels mapping has typically employed one of the Landsat 
sensors (MSS, TM, or ETM+) to map fuels characteristics (Riano et al., 2003). Although these sensors are effective, 

and are widely applicable to 
many environmental mapping 
and monitoring situations, the 
advent of new sensors with 
improved spatial and spectral 
resolutions may improve the 
accuracy (Chuviceo and 
Congalton, 1989) and reduce 
the cost (Zhu and Blumberg, 
2001) of forest fire fuel 
mapping. ASTER, a sensor 
aboard NASA’s Terra 
platform (see specifications 
(Table 1), has untested 
potential for characterizing 
and mapping forest fire fuels. 
The visible and near-infrared 
telescope (VNIR), which 
collects data with a spatial 

resolution of 15 m in the green (0.52 – 0.60 µm), red (0.63-0.69 µm), and near infrared (0.76 - 0.86 µm) portions of 
the electromagnetic spectrum, should be particularly useful for obtaining information about vegetation (Rowan and 
Mars, 2003), and may prove successful in mapping fuel characteristics.  

The objective of this research is to evaluate the accuracy and utility of ASTER satellite imagery coupled with 
gradient modeling for mapping fuel layers required for fire modeling within the FARSITE and FLAMMAP fire 
models, which are used to simulate fire growth (Finney, 1998) and predict potential fire behavior characteristics, 
(Joint Fire Science Program 2003) respectively. Specifically, spatial predictions of surface fuel models (NFFL 1-13 
(Anderson, 1982)) and crown fuel characteristics such as crown bulk density and canopy closure will be developed. 

 
METHODS 

Study Area  
Moscow Mountain (Figure 1), the extreme western extension of the Clearwater Mountains, is located 

approximately 9 km northeast of the city of Moscow, Idaho (latitude 46º 44’N, longitude 116º 58’ W). A local 
landmark in the midst of an agricultural region, it is covered by about 25,000 hectares of mixed conifer forest. The 
mountain is topographically diverse, with gentle to moderately steep slopes on varying aspects. Moscow Mountain 
is under multiple ownership representing differing land management objectives. Existing land uses include private 
home sites, commercial building sites, commercial logging, research forestry, and recreation. Some of the forested 
lands have been logged multiple times; others have had little or no logging. Prescribed burning is used as a 
management tool in the university-managed forest and on the commercial timberlands. The resulting mixed conifer 
forests are variable in structure and species composition; surface fuel loading, the dry weight of combustible 
materials per acre, varies greatly.  

 
Sample Design 

Eighty-three field plots were located using a two-stage (stratified systematic) sample design. For the first stage, 
nine strata were constructed based upon unique combinations of three elevation strata and three solar insolation 
strata. Solar insolation was calculated from a 30m USGS digital elevation model (DEM) for the growing season 
(mid-April – late September) using the Solar Analyst (HEMI, 2000) software package. Solar insolation and 
elevation were each partitioned into three individual strata. The resulting strata were then crossed to provide nine 
combinations of the three solar insolation and three elevation strata. Elevation and solar insolation were chosen 
because they are directly related to the biophysical gradients over the study area. They also characterize the 
biophysical potential of a site, and therefore have a large impact upon fuel dynamics (Keane et al., 2002). For the 

Table 1 - ASTER specifications (adapted from Abrams, 2003) 
Spectral Region Spatial Resolution (m) Channel Bandwidth (µm) 

VNIR telescope 15 1 0.52 - 0.60 
 15 2 0.63 - 0.69 
 15 3 0.76 - 0.86 
SWIR telescope 30 4 1.60 - 1.70 
 30 5 2.145 – 2.185  
 30 6 2.185 – 2.225 
 30 7 2.235 – 2.285 
 30 8 2.295 – 2.369 
 30 9 2.360 – 2.430 
TIR telescope 90 10 8.125 – 8.475 
 90 11 8.475 – 8.825 
 90 12 8.925 – 9.275 
 90 13 10.25 – 10.95 
 90 14 10.94 – 11.65 

 



second stage, Leaf area index (LAI) values, derived from an empirical model using NDVI calculated from a 
LANDSAT ETM+ image (Pocewicz et al., In press), was assigned to each of the nine strata and ranked from low to 
high. Plots were then systematically selected across each stratum’s LAI gradient.  
 
Data Collection 

The development of new technologies, and the need for up-to-date fuels information, has lead to the creation of 
new initiatives aimed at mapping and monitoring fuels and fire effects nationwide. In order to be effective, such 
initiatives need to collect data in a consistent manner. As a result, the USDA Forest Service developed a new 
sampling protocol, called FIREMON (http://fire.org/firemon/). This new protocol is structured in a way that makes 
it applicable to many fuels management scenarios.          

Surface and crown fuels were inventoried at each plot with sampling procedures adapted from the FIREMON 
sampling protocol. A 405 m2 fixed radius plot, which has a radius of 11.35 m (Figure 2), was used for tree 
measurements. The diameter at breast height (DBH), percent live crown, species, distance from plot center, bearing, 
and quadrant (NE, SE, SW or NW) was recorded for every tree or snag > 2.7 cm DBH within the fixed-radius plot. 
A variable radius plot (15 m2/ha) was used to identify large trees or snags outside the fixed radius plot. The same 
variables were recorded for each tree or snag captured with the prism. Height, height to live crown, and both the 
major and minor crown diameter, were measured for the trees with the largest and smallest DBH for each species 
within each quadrant. Canopy density was measured using a spherical densiometer at the northern, eastern, southern, 
and western corners of the fixed-radius plot (Figure 2).   

Downed woody debris (DWD) was measured along four transects (Figure 2). One-hour fuels (DWD 0-0.635 cm 
diameter) and ten-hour fuels (DWD 0.635-2.54 cm diameter) were tallied along the first 1.8 m of each transect. One 
hundred-hour fuels (DWD 2.54-7.62 cm diameter) were tallied along the first 4.6 m of each transect. The diameter 
of one thousand-hour fuels (DWD > 7.62 cm diameter) was recorded along the entire length of each transect. Litter 
and duff depths were measured 4.6 m from the beginning of each 16.06 m transect. Visual estimates of percent 
canopy cover by vegetation class (sapling, seedling, shrub (tall, med. and low), grass, forb, fern, moss/lichen, and 
litter) were made within four 4 x 4 m subplots centered over the midpoint of each DWD transect (8 m from 
beginning). Potential vegetation type, slope, and aspect were also measured and recorded at each plot. 
 
ASTER Image Processing  

A Level 1B (VNIR registered radiance at the sensor) ASTER image, acquired on September 10, 2002, was 
purchased through the Earth Observing System (EOS) Data Gateway. The ASTER image was imported into the 
ERDAS Imagine image-processing software using the built-in ASTER import dialog. Once imported, a geometric 
registration was performed and radiance values were converted to reflectance. Vegetation indices, such as the 
normalized vegetation index (NDVI [NIR - R / NIR + R]), simple ratio (SR [NIR / R]), and green-red ratio 
vegetation index (GRVI [Green - Red / Green + Red]), were calculated from the processed ASTER image.            
  
Surface Fuel Model Layer Development 

Surface fuel models were mapped across the study area by implementing the aforementioned “vegetation 
triplet” (Keane et al., 2002). A supervised classification (maximum likelihood) routine was used to map CT and SS 
from the ASTER imagery. The PVT and final surface fuel model layers were developed using a classification tree 
algorithm within the S-Plus statistical software package. The tree algorithm uses training sets to develop 
classification rules by recursively partitioning training data into categories, with each split chosen to maximize 
differences between the two resultant groups (Lawrence and Wright, 2001). Classification trees are ideal for 
modeling and mapping landscape attributes such as PVT and surface fuel model because the data can be both 
categorical and continuous and are not required to meet any assumptions such as normality and homoscedasticity. 
Classification trees are also able to deal with nonlinearity and are fairly easy to implement and interpret as compared 
to other multivariate techniques (McBratney et al., 2003). A detailed discussion of the techniques used to produce 
each layer follows.  

   PVT Layer Development: PVTs were mapped across our study area through the implementation of 
classification tree decision rules based upon PVT (series level habitat types based upon Cooper et al., 1991) and 
topographical variables (elevation, slope, and aspect) at each of our eighty-three field plots. Elevation, slope, and 
aspect were chosen to classify PVT because they are surrogates for biophysical setting, and therefore directly 
influence the vegetation community composition (Smith et al., 2003). A 10-meter USGS DEM was resampled to the 
same resolution as the ASTER image (15m) using a nearest neighbor algorithm within ArcGIS. The resampling 
procedure was performed to ensure each input (CT, SS, PVT) and output (canopy closure, crown bulk density, and 
surface fuel model) had the same spatial resolution. PVT classification rules were derived from a classification tree 



Table 3 – Canopy Model Coefficients 
Model Coefficients Value 

4 Intercept -22.97    
 NDVI 66.61    
 GRVI 297.00    
6 Intercept -0.0036   
 GRVI 0.0991   

using slope, aspect, and elevation as predictor variables. The final PVT classification rules were then applied across 
the entire study area to create the final PVT layer.   

CT and SS Layer Development: CT, based upon the Society of American Foresters cover type classification 
scheme (Eyre, 1980), and SS, based upon the Interior Columbia Basin Management Project’s (ICBMP) structural 
stage classification scheme (O’Hara et al., 1996), were mapped across the Moscow Mountain study area through the 
implementation of a maximum likelihood supervised classification algorithm in ERDAS Imagine. Field data (our 
eighty-three field plots) and local expert knowledge were used to assign training data used in the classification.  

Final Surface Fuel Model Layer Development: PVT, CT, and SS layers were input as predictor variables in a 
classification tree to derive surface fuel model classification rules based upon field data. These classification rules 
were then applied across the entire study area to create the final surface fuel model layer (Figure 3).     
 
Canopy Fuel Layer Development 

An empirical model (ordinary least squares regression), based upon field data and ASTER data, was employed 
to test the efficacy of ASTER for mapping and characterizing canopy closure and crown bulk density. Canopy 
closure and crown bulk density were calculated at the plot level based upon densiometer measurements and the 
Forest Vegetation Simulator (Stage, 1973), respectively. Initial data analysis was carried out in S-Plus to determine 
which variables to include in the final empirical models. The R2, root mean square error (RMSE), and the Akaike 
Information Criterion (AIC) (Akaike, 1974) statistics were examined to evaluate the performance of each model. 
AIC evaluates model 
fit by penalizing the 
residual deviance by 
the number of 
parameters contained 
in the model (Gessler 
et al. 2000). Lower 
AIC statistics indicate 
better fitting models. 
Combinations of 
vegetation indices 
(NDVI, GRVI and 
SR) calculated from 
the ASTER image, 
were tested as 
predictor variables. In 
total, four regression models (Table 2) were compared for each response variable (canopy closure and crown bulk 
density). Model coefficients were extracted (Table 3) from the best model for each response variable and 
incorporated into an algorithm within ERDAS Imagine to create the final canopy closure and crown bulk density 
layers (Figures 4 and 5, respectively).  

  
RESULTS AND DISCUSSION  

 
The model containing both GRVI and NDVI (model 4) as predictors of canopy closure obtained the highest R2, 

lowest RMSE, and lowest AIC values as compared to the other 
canopy closure models (Models 1-3), therefore it was selected as 
the optimum model for predicting canopy closure. Model 8 had a 
slightly higher R2 than model 6. However, since Model 6 attained 
the lowest RMSE and AIC it was identified as the optimal model 
for predicting crown bulk density.  

Prior studies have used remote sensing to provide estimates of 
crown closure (canopy closure). For instance, Franklin et al. 2003 
demonstrated that significant relationships exist between band five 
(MIR) of the Landsat sensor and canopy closure for two conifer 
species (jack pine: R2 = 0.30, p < 0.005; white spruce: R2 = 0.32, p < 0.005). However, when jack pine was 
considered alone a stronger relationship (R2 = 0.66, p < 0.005) was achieved between the reflectance of band 4 
(NIR) and canopy closure. The study by Franklin et al. 2003 was limited in that it only examined relationships 

Table 2 – Canopy Model Results 

Model Response Predictor(s) R2 RMSE AIC 
1 Canopy Closure NDVI 0.69 18.91% 727.50 
2 Canopy Closure GRVI 0.76 16.68% 706.67 
3 Canopy Closure SR 0.65 20.11% 737.70 
4 Canopy Closure NDVI + GRVI 0.77 16.56% 706.50 

5 Bulk Density NDVI 0.35 0.0092 Kg/m3  -537.93 

6 Bulk Density GRVI 0.46 0.0084 Kg/m3 -553.04 

7 Bulk Density SR 0.36 0.0092 Kg/m3 -538.69 

8 Bulk Density NDVI + GRVI 0.47 0.0085 Kg/m3 -551.84 
(All regressions are significant at the 99.5% confidence level) 



between the reflectances of single Landsat bands and canopy closure. The current study demonstrates that the use of 
vegetation indices that incorporate visible and near infrared reflectances produce relationships similar in strength to 
those achieved by Franklin et al. (2003) (R2 > 0.65, p < 0.005). However, use of GRVI solely or in combination 
with NDVI achieves stronger relationships (R2 > 0.76, p < 0.005).        

Only a few previous studies have implemented remote sensing to estimate crown bulk density, and in general 
these have not included a rigorous assessment of accuracy (Riano et al., 2003). For example, Riano et al. (2003) 
investigated the potential of lidar to estimate forest parameters such as crown bulk density and foliage biomass, and 
highlighted the need for rigorous assessment of such relationships between remotely sensed data and fuel variables. 
However, Keane et al. (2002) estimated crown bulk density using the “vegetation triplet” methodology achieved 
only a poor relationship (R2 = 0.35, p < 0.005). A comparison of this result with the GRVI empirical model (model 
6) demonstrates that a significant improvement (R2 = 0.46, p < 0.005) is achieved by employing this vegetation 
index.         

 
CONCLUSIONS 

 
Overall, ASTER satellite imagery coupled with gradient modeling proved to be effective tools for mapping and 

characterizing wildland fire fuels across the Moscow Mountain study area. The integration of remote sensing and 
gradient modeling presented herein identified surface fuel models that agree with local expert knowledge of existing 
forest fuel conditions. Each of the predictor layers derived for this portion of the study (i.e. PVT, CT and SS) also 
corresponds to local expert knowledge of existing conditions. However, before final conclusions about this analysis 
can be drawn, the quality of each layer requires thorough and quantitative accuracy assessment. Such an assessment 
is currently  (summer of 2004) being conducted across the study area.  
  Employing empirical relationships between ASTER satellite imagery and field data proved successful for 
mapping canopy fuels. The canopy fuel mapping analysis within the current study demonstrate that significant 
improvement is achieved through the use of vegetation indices over the use of single bands, which suggests that 
further analysis is required to assess the efficacy of other vegetation indices for estimating canopy fuel parameters.    
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    Figure 1. Moscow Mountain Study Area - An ASTER image displayed in a 3(NIR) - 2(RED) - 1(GREEN) false   
                    color composite.    



 
 

 
 

Figure 2. Plot Layout Diagram: SF1-4 = Surface Fuel Transects, D1-4 = Densiometer Reading Locations, SP1-3 =  
                Vegetation Subplot Locations.   
 
 
 
 
 
 
 

 
Figure 3. Final Fuels Layer – Fuel Models NFFL 1-13 (Anderson, 1982). 

 
 
 

 



 
 

Figure 4. Final Canopy Closure Layer  (% Canopy Closure). 
 
 
 
 
 
 
 
 
 

 
Figure 5. Final Crown Bulk Density Layer  (Kg/m3). 
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