
MT 3000 MISC 1929

Flumes, Historic Water Yield and Climatological Data for Tenderfoot Creek Experimental Forest, Montana

Phillip E. Farnes, Ward W. McCaughey and Katherine J. Hansen Department of Earth Sciences, Montana State University Forestry Sciences Laboratory, USDA, Forest Service Bozeman, MT 59717 March, 1999

Flumes, Historic Water Yield and Climatological Data

for

Tenderfoot Creek Experimental Forest,

Montana

Final Report

RJVA-INT-96071

Between

U.S. Department of Agriculture Forest Service Rocky Mountain Research Station Forestry Sciences Laboratory Bozeman, Montana

and

Montana State University College of Letters and Sciences Department of Earth Sciences Bozeman, Montana

March 1999

Report Prepared by:

Phillip E. Farnes, Research Scientist, Department of Earth Sciences Dr. Ward W. McCaughey, Principal Investigator, Forestry Sciences Laboratory Dr. Katherine J. Hansen, Principal Investigator, Department of Earth Sciences

This research was supported in part by funds provided by the Rocky Mountain Research Station, U.S. Forest Service, U.S. Department of Agriculture.

Acknowledgments

We appreciate the contribution of the following people and agencies. The Natural Resources and Conservation Service (NRCS) has collected snow course and SNOTEL data at Deadman Creek, Kings Hill and Spur Park, streamflow data at Sheep Creek and assisted with logistical support for flume installation. The Forest Service District Office at White Sulphur Springs and Forest Supervisor's Office in Great Falls assisted with helicopter operations and logistical support. Also helping with installation or data collection and report preparation were Carol Heydon, Judy O'Dwyer, Kathy McDonald, Jack Schmidt, Leon Theroux and Rick Kuntzelman with the U.S. Forest Service. Also helping with the word processing and administrative support were Ann Parker and Kim Rehm with the Department of Earth Sciences. The Rocky Mountain Research Station, Forestry Sciences Laboratory, U.S. Forest Service, Bozeman, Montana, provided office space and technical support. The National Weather Service (NWS) collected early records at the Kings Hill Climatological Station and U.S. Geological Survey collected earlier records at Sheep Creek stream gage. The contribution of these people as well as many others who provided data, equipment, or services is appreciated.

C 🛓

TABLE OF CONTENTS

Page
Introduction
Pack Creek Flume Installation
Upper Stringer Flume Installation
Passionate Creek Weir Installation
Calibration of Existing Flumes
Influences of Historic Fire on Water Yield
Historic Monthly Temperatures
Historic Monthly Snow Water Equivalent
Historic Monthly Precipitation
Historic Monthly Streamflow
Applications Research
Appendix I. Influence of Historic Fires on Water Yield of Tenderfoot Creek Experimental Forest
Appendix II. Historic Monthly Temperatures for Onion Park, Tenderfoot Creek Experimental Forest
Appendix III. Historic Snow Water Equivalent on Tenderfoot Creek Experimental Forest 22
Appendix IV. Historic Monthly Precipitation on Tenderfoot Creek Experimental Forest 29
Appendix V. Historic Monthly Streamflow for Tenderfoot Creek Below Stringer Creek

Introduction

The objectives of this Research Joint Venture Agreement (RJVA) were to install and calibrate three flumes on Tenderfoot Creek Experimental Forest (TCEF) in central Montana; check calibration of the existing seven flumes on TCEF; estimate the influence of fire on water yields over the 400-year fire history period; and estimate back records of monthly temperature, monthly snow water equivalent, monthly precipitation for TCEF, and monthly streamflow for the lower Tenderfoot Creek flume (Tenderfoot Creek below Stringer Creek). Because of the potential for high streamflows in 1997, and the potential for low flows in 1998, we postponed this report so that 1997 and 1998 streamflow data could be included in the streamflow analysis. The information shown in this report completes the requirements for this RJVA.

Pack Creek Flume Installation (Pack Creek Near Mouth)

A 2-foot Parshall flume was obtained from the Beaverhead National Forest. To accommodate higher streamflows, additional sidewall extensions were constructed and bolted to the flume, an inlet nipple for attaching the stilling well was welded to the flume, a staff gage was installed in the flume across from the stilling well inlet and the stilling well and water level recorder cover were constructed. The flume and all installation materials were shipped to the site on July 17, 1996, with a helicopter contracted through the White Sulphur Springs District Office (Jet Ranger II operated by Charlie Rogers of Central Air Service of Lewistown, Montana). The flume was installed between August 5 and 22, 1996. The recorder was installed and a rating table developed by September 5, 1996, making the site fully operational. Detailed information is on file at the Forestry Sciences Laboratory in Bozeman, Montana.

Upper Stringer Flume Installation (Stringer Creek Above East Fork)

A 3-1/2-foot H-flume stored at the Forestry Sciences Laboratory in Bozeman, Montana, was readied for installation. A stilling well and instrument shelter cover were constructed and a staff gage was installed in the flume. The flume and shelter were disassembled and shipped to the site on July 17, 1996, by helicopter. All installation materials were also prepared and shipped to the site by helicopter the same day. The flume and instrument shelter were installed between August 5 and 22, 1996. The recorder was installed and a rating table developed by September 5, 1996, making the site fully operational. Detailed information is on file at the Forestry Sciences Laboratory in Bozeman.

Passionate Creek Weir Installation (Passionate Creek Near Mouth)

A 4-foot Cipolletti weir was constructed by Midwest Welding of Bozeman, Montana, and prepared for installation. A stilling well and instrument recorder cover were constructed. A staff gage was installed on the flume. The flume, stilling well and all installation materials were prepared and shipped to the site on July 17, 1996, by helicopter. The weir and stilling well were installed between August 5 and 22, 1996. The recorder was installed and a rating table developed by September 5, 1996, making the site fully operational. Detailed information is on file at the Forestry Sciences Laboratory in Bozeman.

2

Q₃

0)

F .

Calibration of Existing Flumes

Current meter readings were made at existing flumes. Some problems were encountered since cross-sections from which to accurately gage the streamflow were poor, except at the flume sites. At the flume sites, particularly the H-flumes and Cipolletti weir, the flow regime was disrupted by the flumes. It was decided that the standard calibration values for these flumes were more accurate than the streamflow estimates that could be made with the current meter. It was concluded that the existing calibrated ratings would be the most accurate method to use to obtain flow data, particularly throughout the full range from low to high flows. Also, access was difficult during high flows, and fluctuations from wave action during high flows made it difficult to obtain accurate staff gage readings which were compared to current meter readings. In general, flows measured with the current meter were within 5 to 10 percent of flows determined with rating curves.

Influences of Historic Fire on Water Yield

Records of fire history, interception of snow and precipitation and relationships with runoff were used to develop a formal presentation on "Historic Role of Fire in Determining the Natural Variability of Annual Water Yield in Mountain Watersheds" which was presented at the Western Snow Conference in Banff, Alberta, in May 1997. Principal investigators in this RJVA were co-authors. A copy of this paper is included in Appendix I.

Historic Monthly Temperatures

Average maximum (TMax) and minimum (TMin) monthly temperatures were estimated by comparing weather station records at Onion Park with climatological stations at White Sulphur Springs, Neihart and Kings Hill and SNOTEL sites at Spur Park and Deadman Creek. Estimates of historic monthly average TMax and TMin temperatures for Onion Park are shown in Appendix II. Relationships and techniques used to estimate historic temperatures are on file at the Forestry Sciences Laboratory in Bozeman.

Historic Monthly Snow Water Equivalent

Snow water equivalent (SWE) measured at snow courses on TCEF were summarized and compared to NRCS snow pillows at Spur Park (8,100 ft) and Deadman Creek (6,450 ft) located approximately 15 miles ESE of TCEF. The Kings Hill snow course (7,500 ft) about 12 miles ESE of TCEF was also compared. Correlations between individual snow courses and the average of eight TCEF open snow courses and estimated historic SWE for TCEF are shown in Appendix III. Procedures and techniques used to estimate historic SWE are on file at the Forestry Sciences Laboratory in Bozeman.

Historic Monthly Precipitation

Monthly precipitation values measured at storage gages and electronic tipping buckets at data sites on TCEF were summarized and compared to NRCS SNOTEL stations at Spur Park and Deadman Creek, and the discontinued climatological station at Kings Hill. Correlations

between individual stations and the average of eight sites and estimated historic monthly precipitation for TCEF are shown in Appendix IV. Relationships and techniques used to estimate historic precipitation are on file at the Forestry Sciences Laboratory in Bozeman.

Historic Monthly Streamflow

Because of the potential for high streamflows in the spring of 1997 and low flows in 1998, it was decided to wait until 1998 records were available to complete correlations. The only long-term stream gage records available for cross-correlation are from Sheep Creek near White Sulphur Springs. Flows were divided into periods to represent base, winter, spring and summer flows. Correlations and estimates of historic flow for Tenderfoot Creek below Stringer Creek (lower Tenderfoot flume) are shown in Appendix V. Procedures and techniques used to estimate historic streamflow data are on file at the Forestry Sciences Laboratory in Bozeman.

Applications Research

To date, the data provided by this study has been used by Chad Moore for his master's thesis, "Snow Accumulation Under Various Successional Stages of Lodgepole Pine", Earth Sciences Department, Montana State University; Tess Brennon, Earth Sciences Department, Montana State University, who is doing her master's thesis on whitebark pine; and Jeff Boice, Earth Sciences Department, Montana State University, for his master's thesis on "Analysis of Morphometric Variability for First and Second Order Streams in the Tenderfoot Creek Experimental Forest". There are also various other ongoing studies by USFS researchers.

(Ja

6)

APPENDIX I. INFLUENCE OF HISTORIC FIRES ON WATER YIELD OF TENDERFOOT CREEK EXPERIMENTAL FOREST

The historic role of fire relative to runoff in the Tenderfoot Creek Experimental Forest was investigated. The results were presented in a technical paper. This paper was presented at the 66th Annual Western Snow Conference, May 5-8, 1997, in Banff, Alberta, Canada, and was published in those proceedings. An updated copy of this technical paper is included.

HISTORIC ROLE OF FIRE IN DETERMINING THE NATURAL VARIABILITY OF ANNUAL WATER YIELD IN MOUNTAIN WATERSHEDS

by

Ward W. McCaughey, ¹ Phillip E. Farnes, ² and Katherine J. Hansen³

ABSTRACT

Management of forested watersheds should be based on information that accurately reflects the historic natural range of variability of historic water yields. Water yields from mountain watersheds depend on total precipitation input, the type and distribution of precipitation, canopy interception, and losses to evaporation, transpiration and groundwater. A systematic approach was developed to estimate the natural range of variability of average annual runoff based on historic fire patterns, habitat cover types and precipitation patterns on the Tenderfoot Creek Experimental Forest, Montana USA. The systematic approach developed correlations between measured values of average annual runoff and precipitation, forest canopy cover and precipitation reduction, forest canopy cover and habitat cover type, winter precipitation reduction and habitat cover type and effective precipitation and average annual runoff. Historic average annual runoff was then estimated for fire-generated stands before and after a fire year.

A fire history study on the experimental forest indicates that much of the watershed burned in the 1700s and 1800s. Two fires occurred in the 1700s and six in the 1800s covering more than 45 percent and 65 percent of the experimental forest, respectively. Only three small fires totaling 19 ha have occurred since the initiation of fire suppression in the early 1900s.

Annual water yield was estimated for the experimental forest for the past 400+ years. Maximum average annual runoff was estimated at 12.48 X 10⁶ cubic meters (m³) for the late 1500s after a considerable portion of the watershed was burned and the 1581 to 1997 average water yield was estimated to be 11.68 X 10⁶ m³. The maximum average water yield if all timber were removed, is estimated to be 13.24 X 10⁶ m³. The minimum average annual runoff if the entire forest consisted of mature lodgepole pine is estimated to be 11.23 X 10⁶ m³. The present yield of 11.36 X 10⁶ m³ approximates the lowest yield of 11.25 X 10⁶ m³ and is near the minimum possible for this experimental forest. Current fire suppression coupled with succession has decreased water yields close to minimum levels in many watersheds and created forest conditions conducive to catastrophic fires. Forest management that reflects natural variability could create a mix of successional stages, reduce fire potential and maintain increased water yields within natural hydrologic

()

63

INTRODUCTION

This paper presents the computational procedures for estimating 400 years of average annual water yields and provides estimates of the natural range of water yield variability based on fire history patterns, annual precipitation and habitat cover types. Current hydrologic models predict effects from vegetation management but do not adequately reflect the natural range of variability of annual water yield from watersheds. Hydrologists use computer models to predict the potential effects of vegetation manipulation on water yield from watersheds. Watershed models such as WATSED (Water and sediment yield model-USDA Forest Service 1991) and WATBAL (Water balance model) provide hydrologists with information on projected water and sediment yields based on levels of vegetation management. Information from these models are used in the management of watersheds where hydrologic limits are placed on management activities based on bank full and peak flows estimates.

There are no known models that incorporate fire history into water yield predictions.

Historic water yield information is needed to determine the natural range of variability of water yields so that hydrologic limits can be correctly determined. Decisions to manage vegetation within watersheds are based on a variety of factors including protection of threatened or endangered species, wildlife habitat protection and the hydrologic limits. Hydrologists have minimal to no long-term historic streamflow data on undisturbed or disturbed watersheds. Streamflow data for only the past 20 to 80 years may not accurately indicate the natural range of variability of historic water yields from mountain watersheds because of fire suppression.

Snowmelt accounts for 50 to 70 percent of the total annual runoff in lodgepole pine and spruce/fir stands of the Northern Rockies (Farnes 1978). Water yield can be increased in subalpine forests through the use of prescribed fire or other management techniques such as harvesting. Openings created by fires or through forest management increase snow accumulation, decrease sublimation losses and increase water yields (Gary and Troendle 1982). Partial cutting reduces winter interception loss and summer soil water depletion due to shading effects of the remaining overstory (Troendle 1986).

Precipitation inputs, water yield outputs and forest canopy interception data have been collected on the Tenderfoot Creek Experimental Forest (TCEF), Montana USA, since 1992. The experimental forest was used for this study because it is representative of subalpine fir (*Abies lasiocarpa*) forests composed primarily of lodgepole pine (*Pinus contorta* Dougl. var. *latifolia*). This forest type covers six million hectares (ha) of commercial forest lands in the Rocky Mountains (Koch 1996; Wheeler and Critchfield 1984), and therefore the results of this study have wide geographic applicability. Mountain watersheds are important catchment basins for precipitation used for irrigation, hydroelectric generation and recreation. These watersheds provide high quality drinking water for municipalities and aquatic and riparian habitats for fish, aquatic insects, waterfowl and a host of wildlife species such as beaver (*Castor canadensis*), moose (*Alces americana*) and dippers (*Cinclus mexicanus unicolor*).

STUDY LOCATION

The Tenderfoot Creek Experimental Forest covers 3,709 ha of the headwaters of the Tenderfoot Creek watershed located in the Little Belt Mountains in central Montana. The experimental forest, established in 1961 for watershed research, has an average annual precipitation of 890 millimeters (mm) that varies from 595 mm in the lower elevations to 1,050 mm in the higher elevations. Elevations range from 1,838 to 2,421 meters (m) with an average of 2,206 m. Fire suppression since the early 1900s has reduced the effects of fires on the experimental forest (Barrett 1993).

The experimental forest is currently about 9 percent non-forested, 42 percent is in single-aged stands and 49 percent is in two-aged stands. The geology, soils, and stand conditions within the experimental forest are fairly consistent, providing a near-optimum site to isolate the influence of canopy coverage and habitat cover type on runoff. The oldest stands on TCEF were last burned in 1580, and the most recent burn affecting a large area occurred in 1902 (Table 1). The 1580 burn is currently a mature Engelmann spruce/subalpine fir (*Picea engelmannii/Abies lasiocarpa*) stand with a few isolated mature lodgepole pine found where mortality has created gaps in the overstory. From 1580 to 1902, ten fires occurred with an average fire size of 621 ha and an average of 32 years between fires. Three small burns (average size of six ha) in 1921, 1947 and 1996 (32 years between fires on the average) have affected less than 20 ha or less than 1 percent of the experimental

forest in the last 95 years. In contrast, 1,660 and 2,415 ha have burned in each of the two preceding centuries (Table 1).

Year	Size (ha)	Percent of total area
1580	1900	51
1676	32	
1726	1108	30
1765	552	15
1831	41	1
1845	1008	27
1873	1317	36
1882	30	1
1889	19	<1
1902	206	6
1921	8	<1
1947	11	<1
1996	0.4	<1

Table 1. Year of fire, area burned and percent burned of total area of Tenderfoot Creek Experimental Forest (Barrett 1993, unpublished report).

METHODS

We used a six-step approach to estimate average annual runoff on the Tenderfoot Creek Experimental Forest. This process involved the development of mathematical relationships between a variety of variables. In step one, average annual runoff measured on Tenderfoot Creek over the past five years was correlated with accumulation and precipitation data from nearby weather stations and <u>SNO</u>w survey TELemetry (SNOTEL) sites. These correlations were used to estimate the averages for 30 years(1961-1990) of average annual runoff, April 1 snow water equivalent (SWE), April through June precipitation (rain) and average annual precipitation on TCEF (Figure 1). July through September precipitation was not considered to affect runoff in this study. This late summer precipitation added little to stream runoff because of high evaporation rates, increased water use by vegetation and high soil moisture deficits.

In step two we developed a relationship between forest canopy and the reduction in accumulation of SWE due to canopy interception. Snow interception is expressed as the reduction of snow water equivalent (SWE) in lodgepole pine and spruce/fir stands as compared to snow accumulation in openings. Snow water equivalent was measured at six canopy-covered and eight open sites on the experimental forest since 1993. Since 1994 daily SWE has been recorded from two snow pillows on the experimental forest, one in the open and one under a forest canopy. Forest canopy has been measured and comparisons made between canopy cover and SWE at Natural Resource Conservation Service snow courses in Montana since the early 1960s (Farnes 1971). The effect of a logging altered forest canopy on SWE in Montana was studied by Hardy and Hansen-Bristow in 1990. After the 1988 fires in Yellowstone National Park, additional measurements were made in burned and unburned forest stands and compared to forest canopy (Farnes 1989; Farnes and Hartman 1989). Canopy cover and SWE data for stands with varying densities of canopy cover on the experimental forest were combined with data from these other studies (Hardy and Hansen-Bristow 1990; Skidmore et al. 1994 Moore 1997; Moore and McCaughey 1997). Measurements were made of canopy coverage using a

8

ź

U3

C

photocanopyometer (Codd, 1959) that yielded a correlation ($R^2 = 0.62$) with snow interception.

In step three, data from TCEF and other studies (Farnes 1989; Farnes and Hartman 1989; Hardy and Hansen-Bristow 1990; Moore 1997; Moore and McCaughey 1997; Skidmore et al. 1994) were used to develop a relationship between percent forest canopy and habitat cover type (HCT) based on Despain, 1990. Habitat cover type classification is a method of classifying plant communities that result from a continuous successional process. The lower the HCT number designation the younger the stand. For example, an LPO HCT represents a recently burned forest where lodgepole pine is expected to colonize the site or has done so already. An LP3 HCT is a mature stand containing extensive lodgepole pine mortality and high amounts of large and small seedlings and saplings of Engelmann spruce and subalpine fir. The species designation for a particular habitat cover type depends on the species that dominates a successional stage. The habitat type for a fire generated stand was combined with stand age, as determined by fire history, to obtain a numerical habitat cover type index value which more accurately reflects the successional stage of the stand. For example, a recently burned lodgepole pine stand is classified as an LPO. An LP1 is a mature forest and may be from 50 to 150 years old depending on site growing conditions. An LP3 is an overmature stand, generally older than 300 years with many dead and dying trees and is at climax. Likewise, an SF1 is a mature spruce/fir stand approximately 150 to 200 years old and an SF2.5 stand is near climax and approximately 400 to 500 years old. The age of mature stands was assumed to be 100 for lodgepole pine and 200 for spruce/fir stands on the experimental forest. Therefore, the HCT for a lodgepole pine stand is computed by dividing the age by 100 (150-yearold stand = LP1.5 HCT) and the HCT for a spruce/fir stand is the stand age divided by 200.

Data from steps one, two and three were combined in step four to quantify the reduction in SWE due to canopy interception and HCT index for lodgepole pine and spruce/fir stands. Habitat cover type and precipitation throughfall data from TCEF and other studies (Arthur and Fahey 1993; Fahey et al. 1988; Wilm and Niederhof 1941) were used in this process.

Average annual runoff was calculated in step five for each 5-centimeter precipitation increment which had been measured and delineated for the precipitation gradient of the experimental forest. Runoff from watersheds adjacent to the experimental forest (Farnes 1971, 1978; Farnes and Hartman 1989) was used to estimate past runoff for the experimental forest. The maximum and minimum annual runoff was computed for each precipitation zone assuming no forest canopy cover or complete canopy coverage. The canopy interception reduction in SWE and rain throughfall for each HCT was then used to calculate runoff for each habitat cover type in all precipitation zones. For example, the reduction in SWE and April - June precipitation was used to compute the runoff for the 900 mm (maximum) precipitation zone within a lodgepole pine HCT (Table 2). Average annual runoff for each precipitation zone and lodgepole pine HCT was then computed (Table 3) from values obtained from Table 2. Although changes in snowfall totals may have occurred over time, the reconstruction of the past 400+ years was based on the recent 30year average period (1961 to 1990).

In the final step, we estimated average annual runoff from each firegenerated stand using habitat cover type before and after each fire. An HCT index value was assigned for each stand immediately prior to a fire. The stand was then reassigned a lower index value for the year after the fire, reflecting the stand's new open canopy condition. Net precipitation accumulation for each HCT and precipitation zone was estimated by taking the total precipitation input and estimating the reduction due to canopy interception of snow (SWE) and April to June rain. Average annual runoff was computed for all HCT stands and open areas based on precipitation zone and accumulated to obtain average annual runoff for the entire watershed for the year before and after each fire. 5

C)

RESULTS AND DISCUSSION

Average annual runoff, the amount of precipitation falling as snow (April 1 SWE) and the amount falling as rain (April - June) increased at different rates as the average annual precipitation increased (Figure 1). Runoff is a function of precipitation received and the amount remaining after vegetation use, soil and groundwater recharge, evaporation and sublimation losses. Vegetation significantly affects soil and groundwater recharge and subsequent runoff. From the soil surface to a depth of 1.2 m, clearcuts or openings retain the highest percentage of soil moisture and mature stands the lowest (Newman and Schmidt 1980). Evaporation losses can be considerable in warm dry years. Sublimation is a function of the area in the forest, the age and species structure of the forest canopy, and the season in which precipitation occurs. April 1 SWE gives the greatest contribution to annual runoff because of saturated soils and minimal vegetation water use at the time of snowmelt. Average annual precipitation was positively correlated to

Regression coefficients of percent canopy cover and SWE calculated as a percent of an open condition were not significantly different and were combined (Figure 2). The SWE showed a linear relationship and had a minimum accumulation of 69 percent of that measured in adjacent open areas in lodgepole pine and spruce/fir stands with 70 percent canopy cover.

Canopy cover increases quickly as lodgepole pine and spruce/fir stands approached maturity (HCT of 1 to 1.5) and decreased slowly as stands advanced into late successional stages (Figure 3). Mortality due to age, disease, windthrow and insects create gaps in late successional stands allowing increased amounts of snow and rain to reach the forest floor. Spruce/fir stands had a greater canopy coverage than lodgepole pine stands throughout all successional stages because of their denser foliage and shade tolerance characteristics, enabling multi-structured stands to develop.

Table 2.

Calculations of the runoff for a lodgepole pine habitat cover type (HCT) for a 900 mm precipitation zone.

Precipitation zone April 1 SWE = April - June precipitation	900 338 246	mm Run	runoff ÷ precipitation	378 42	mm F
April - June precipitation	246	mm			•

HCT	SWE	Precipitation	Total	Net	Runoff
LP	reduction ¹	reduction ²	reduction ³	precipitation ⁴	mm
.0	0	0	0	900	378
.1	7	7	14	886	372
.2	16	17	33	867	364
.3	24	25	49	851	357
.4	30	33	63	837	352
.5	37	41	78	822	345
. 6	44	49	93	807	339
.7	49	58	107	793	333
.8	55	65	120	780	328
.9	61	69	130	770	323
1.0	65	71	136	764	321
1.1	69	71	140	760	319
1.2	72	71	143	757	318
1.3	75	71	146	754	317
1.4	77	70	147	753	316
1.5	78	69	147	753	316
1.6	78	69	147	753	316
1.7	78	68	146	754	317
1.8	78	66	144	756	318
1.9	77	65	142	758	318
2.0	77	64	141	759	318 319
2.1	76	64	140	760	319 319
2.2	75	63	138	762	319
2.3	74	62	136	764	
2.4	73	60	133	767	321
2.5	72	59	131	769	322
2.6	71	59	130	769	323
2.7	69	58	127		323
2.8	67	57	127	773	325
2.9	65	55	124	776	326
3.0	63	54	120	780	328
¹ 338 - (% open x 338) % open x 246)			783 minus total redu	329

³Sum SWE and precipitation reduction

.

ŧ

The amount of snow (SWE) and rain (April - June precipitation) that reached the forest floor decreased sharply as lodgepole pine and spruce/fir stands approached maturity (Figures 4 and 5). Precipitation throughfall and SWE remained constant for a short period after stands matured and then increased slowly as stands approached late successional stages. A higher percentage of snow reaches the forest floor under lodgepole pine than under spruce/fir stands because of the dense foliage characteristics of spruce and fir (Figures 4 and 5). Precipitation throughfall as rain is nearly equal for lodgepole pine and spruce/fir stands.

4

ę,

		<u> </u>			-	-					
	нст	-		Ave	rage annu	al prec	ipitati	on zone	s, mm		······································
	LP	600	650	700	750	800	850	900	950	1000	1050
					Runoff	(mm)					
	.0	126	169	210	255	296	340	378	418	460	504
	.1	124	166	206	251	291	334	372	411	453	496
	.2	121	162	202	245	285	328	364	403	444	486
	.3	118	159	198	240	280.	322	357	396	436	478
	.4	116	156	194	236	275	316	352	389	428	470
	.5	114	153	190	232	270	310	345	382	421	462
	.6	111	150	187	227	264	304	339	376	414	454
	.7	109	147	183	223	259	299	333	369	407	446
	. 8	107	144	180	219	255	294	328	363	400	440
ſ	. 9	105	142	177	216	252	290	323	359	396	434
	1.0	104	141	176	214	249	288	321	356	392	431
L	1.1	104	140	175	213	248	286	319	354	390	429
ſ	1.2	103	139	174	212	247	285	318	352	389	427
	1.3	103	139	173	211	246	284	317	351	387	425
L	1.4	103	139	173	211	246	284	316	351	387	424
	1.5	103	139	173	211	246	284	316	351	387	425
	1.6	103	139	173	211	246	284	316	351	387	425
L	1.7	103	139	174	212	247	284	317	352	388	425
l	1.8	103	139	174	212	247	284	318	352	388	427
	1.9	104	140	175	212	248	285	318	352	389	427
_	2.0	104	140	175	214	248	286	319	353	390	428
	2.1	104	140	175	214	248	286	319	354	391	428
	2.2	104	140	176	214	249	287	320	355	391	430
_	2.3	105	141	176	215	250	288	321	356	392	431
	2.4	105	142	177	216	251	289	322	357	394	432
	2.5	105	142	177	216	252	290	323	358	395	433
	2.6	105	142	178	217	252	290	323	359	395	433
	2.7	106	143	178	218	253	292	325	360	397	435
-	2.8	106	144	179	218	254	293	326	362	398	437
2	2.9	107	144	180	219	256	294	328	363	400	439
	1.0	108	145	181	220	256	295	329	364	402	440

Table 3. Average annual runoff for lodgepole pine habitat cover types (HCT) and average annual precipitation zones.

J.

Average annual runoff was estimated at 12.48 X 10⁶ m³ when fires burned 51 percent of TCEF in 1581, producing the highest estimated average annual runoff during the past 400 years (Table 4 and Figure 6). The average annual runoff from 1581 to 1997 was estimated to be 11.68 X 10⁶ m³. If all timber from TCEF were removed, the annual runoff is estimated to be 13.24 X 10⁶ m³ in an average precipitation year, 21.19 X 10⁶ m³ in a wet year (160 percent of average based on data from gaged streams near TCEF) and 6.62 X 10⁶ m³ in a dry year (50% of average). The annual runoff was estimated at 11.23 X 10⁶ m³ in an average year, 17.97 X 10⁶ m³ in a wet year and 5.62 X 10⁶ m³ in a dry year if all stands on TCEF were mature lodgepole pine (HCT of 1). The 1997 estimate of average annual runoff (11.36 X 10⁶ m³) approaches the minimum yield value of 11.23 X 10⁶ m³ occurring under mature forest conditions (Figure 6).

Period		m ³
1581-1997	Average annual runoff =	11.678
1961-1990	Average annual runoff =	11.458
1997	Average annual runoff =	11.360
1581-1997	Maximum average annual runoff (1581) =	12.485
1581-1997	Minimum average annual runoff (1873) =	11.247
	Average annual runoff with all forest burned =	13.241
	Average annual runoff with 91% mature forest =	11.230
	Maximum annual runoff, no forest, wet year =	21.186
	Minimum annual runoff, 91% mature forest, dry year =	5.615

Table 4. Estimated annual runoff in cubic meters (m³).

SUMMARY

Fire has played a significant role in determining the average annual runoff patterns for Tenderfoot Creek Experimental Forest over the past 400+ years and throughout the North American west. Prior to fire suppression, when average annual runoff approached a minimum level in a mature forest, fires removed large portions of the forest canopy, resulting in increased runoff (Figure 6). Fire suppression and succession over the last 90 years has allowed the forested areas to remain in a mature stage, resulting in water yields that are now approaching the minimum estimated level. Continued fire suppression will create a fuel buildups that could result in catastrophic fires. The effects of a major fire event would severely impact stream channels, fisheries, wildlife and recreation. This study shows that it is possible to estimate the historic variability in runoff in lodgepole pine and spruce/fir forests using past fire patterns, average annual precipitation, April SWE, April - June precipitation and habitat cover type. We feel that this approach to estimate historic runoff patterns can be used in other forest types if precipitation throughfall and other input variables are known. Management strategies can be applied that create a mixture of successional stages which reduce fire potentials, and thereby influence water yields.

6

Ca

REFERENCES

- Arthur, M. A.; Fahey, T. J. 1993. Throughfall chemistry in an Engelmann spruce-subalpine fir forest in north central Colorado. Canadian Journal of Forest Research. 23: 738-742.
- Barrett, Stephen W. 1993. Fire history report for the Tenderfoot Creek Experimental Forest. Unpublished report on file at: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station (formally know as Intermountain Research Station), Forestry Sciences Laboratory, Bozeman, MT. 23 p.
- Codd, A. R. 1959. The photocanopyometer. Proceedings: Western Snow Conference; 1959 April 21-23; Reno, NV: 17-22.
- Despain, D. G. 1990. Yellowstone vegetation: consequences of environment and history in a natural setting. Roberts-Rinehart Inc. Press, Boulder, CO. 239 p.
- Fahey, Timothy J.; Yavitt, Joseph B.; Joyce, Greg. 1988. Precipitation and throughfall chemistry in <u>Pinus</u> <u>contorta</u> spp., <u>latifolia</u> ecosystems in southeastern Wyoming. Canadian Journal of Forest Research. 18: 337-345.
- Farnes, Phillip E. 1971. Mountain precipitation and hydrology from snow survey. Proceedings: Western Snow Conference; April 20-22; Billings, MT: 44-49.
- Farnes, P. E. 1978. Preliminary report, hydrology of mountain watersheds. Bozeman, MT: U.S. Department of Agriculture, Soil Conservation Service. 7 p.
- Farnes P. E. 1989. Internal report, Relationships between snow water equivalents in burned and unburned areas, habitat cover types, canopy cover and basal area. Bozeman, MT: Department of Agriculture, Natural Resources Conservation Service.
- Farnes, Phillip E.; Hartman, Robert K. 1989. Estimating effects of wildfire on water supplies in Northern Rocky Mountains. Proceedings: Western Snow Conference; 1989 April 18-20; Fort Collins, CO: 90-99.
- Gary, H. L.; Troendle, C. A. 1982. Snow accumulation and melt under various stand densities in lodgepole pine in Wyoming and Colorado. Res. Note RM-417. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 7 p.
- Hardy, Janet P.; Hansen-Bristow, Katherine J. 1990. Temporal accumulation and ablation patterns of the seasonal snowpack in forests representing varying stages of growth. Proceedings: Western Snow Conference; 1990 April 17-19; Sacramento, CA: 23-34.
- Koch, Peter. 1996. Lodgepole pine in North America-Volume 1. Forest Products Society Press. Madison, WI. 343 p.
- Moore, Chadwick A. 1997. Snow accumulation under various successional stages of lodgepole pine. Bozeman, MT: Montana State University. 91 p. Thesis.
- Moore, C. A.; McCaughey, Ward W. 1997. Snow accumulation under various forest stand densities at Tenderfoot Creek Experimental Forest, Montana, USA. Proceedings: Western Snow Conference; 1997 May 4-8; Banff, Alberta, Canada: 42-51.

Newman, Howard C.; Schmidt, Wyman C. 1980. Silviculture and residue treatments affect water used by a larch/fir forest. Proceeding: Environmental consequences of timber harvesting in Rocky Mountain coniferous forests. USDA Forest Service Gen. Tech. Rep. INT-90, Intermountain Forest and Range Exp. Stn., Ogden, UT. 75-110. đ

€3

63

- Skidmore, Peter; Hansen, Katherine; Quimby, William. 1994. Snow accumulation and ablation under fire-altered lodgepole pine forest canopies. Proceedings: Western Snow Conference; 1994 April 18-21; Santa Fe, NM: 43-52.
- Troendle, C.A. 1986. The potential effect of partial cutting and thinning on streamflow from the subalpine forest. Res. Pap. RM-274. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 7 p.
- USDA Forest Service, 1991. WATSED-A Water and Sediment Yield Model. Range, Air, Watershed and Ecology Staff Unit, Region 1, USDA Forest Service and Montana Cumulative Watershed Effects Cooperative, Missoula, MT.
- Wheeler, Nicholas C.; Critchfield, William B. 1984. The distribution and botanical characteristics of lodgepole pine: biogeographical and management implications. In: Baumgartner, David M.; Krebill, Richard G.; Arnott, James T.; Weetman, Gordon R., eds. Lodgepole pine the species and its management symposium proceedings; May 8-10; Spokane, WA; May 14-16; Vancouver, BC. Pullman, WA: Office of Conferences and Institutes, Cooperative Extension. 1-13.
- Wilm, H. G.; Niederhof, C. H. 1941. Interception of rainfall by mature lodgepole pine. Journal of Trans. Am. Geophys. Union. 22: 660-666.

¹ Research Forester, USDA Forest Service, Rocky Mountain Research Station, Forestry Sciences Laboratory, Montana State University, Bozeman, Montana 59717-0278.

² Research Scientist, Department of Earth Sciences, Montana State University, Bozeman, Montana 59717

³ Professor of Geography, Department of Earth Sciences, Montana State University, Bozeman, Montana 59717.

Presented at the 66th Annual Western Snow Conference, May 5-8, 1997, Banff, Alberta, Canada. Updated 12/3/97.

FIGURES

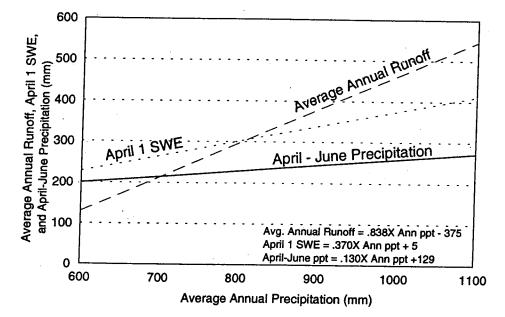


Figure 1. Relationship of average annual runoff, April 1 snow water equivalent (SWE) and April - June precipitation in open canopy areas to average annual precipitation.

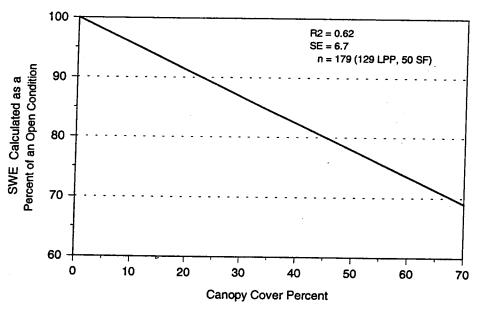
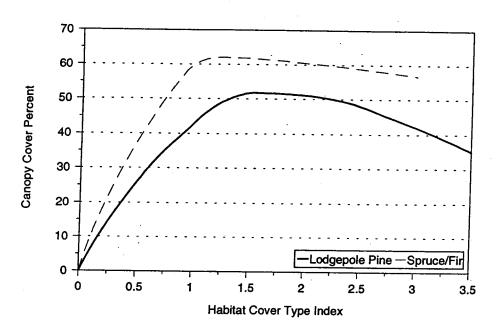



Figure 2.

Snow water equivalent calculated as a percent of an open condition compared to percent canopy cover for lodgepole pine and spruce/fir stands in and near the Tenderfoot Creek Experimental Forest. Canopy cover is measured with a photocanopyometer with a 30° cone.

6

C ;

Figure 3. Relationship between canopy cover measured with a photocanopyometer and the habitat cover type index for lodgepole pine and spruce/fir stands.

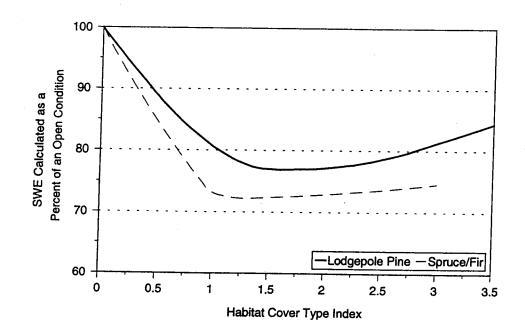


Figure 4. Relationship between snow water equivalent (SWE) calculated as a percent of an open condition and habitat cover type under lodgepole pine and spruce/fir stands.

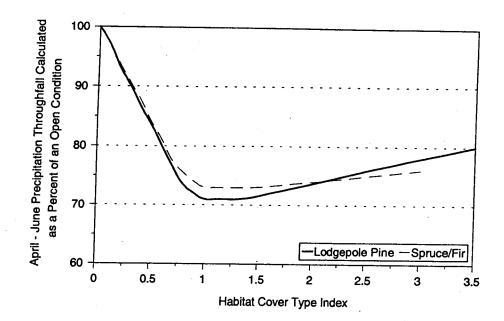


Figure 5. Relationship between April - June precipitation (rain) throughfall calculated as a percent of an open condition and habitat cover type index under lodgepole pine and spruce/fir stands.

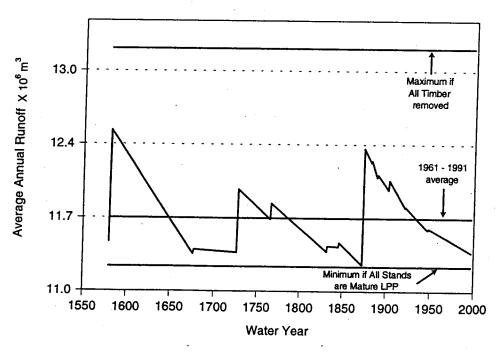


Figure 6.

Average annual runoff based on fire history data and canopy cover/precipitation/runoff relationships under the 1961-1990 average precipitation regime.

APPENDIX II. HISTORIC MONTHLY TEMPERATURES FOR ONION PARK, TENDERFOOT CREEK EXPERIMENTAL FOREST

The following stations were used to estimate historic average maximum (TMax) and minimum (TMin) monthly temperature for the Onion Park site (7,410 ft) on TCEF. Daily temperatures at this site have been recorded since the 1992 water year (WY).

Name, '	Type, Elevation and Period of Re	cord for Temp	perature Station
Station	Туре	Elev. Ft.	Period of Record (WY)
Deadman Creek	SNOTEL	6,450	1992-present
Kings Hill	CLIM	7,310	1949-1965
Neihart 8NNW	CLIM	5,230	1968-present
Spur Park	SNOTEL	8,100	1983-present
White Sulphur Springs	CLIM	5,160	1912-1978
White Sulphur Springs 2	CLIM	5,200	1979-present

SNOTEL = Snow Survey Telemetry station maintained and operated by NRCS.CLIM = Climatological station operated by NWS and cooperative observers.

Temperature records have been collected at the Stringer Creek site (6,550 ft) on Tenderfoot Creek Experimental Forest starting in the 1996 water year. Not enough data has been collected yet to develop a historic data set, but the following equation has been developed using 1996-1998 data ($R^2 = .927$) to estimate average temperature (TAvg). TMax and TMin data for Stringer Creek has not been analyzed. Stringer Creek TAvg = 1.01 x Onion Park TAvg + 0.5. Temperatures are in degrees Fahrenheit correlations, and estimating equations used to determine historic temperatures for Onion Park are on file at the Forestry Sciences Laboratory in Bozeman, Montana.

C)

XAMT əgetəvA Tenderfoot Creek Experimental Forest Onion Park, "F Average Maximum and Minimum Monthly Temperatures for Onion Park, "F

NIMT ageravA

			7/(NIM.	L + X	AMT) = {	ΟΛΑΤ	, suoi	isie T	o noit	enidn B	100 g m	05 off befar	nites erin	or yea	ь. БП	.9112	าาา	ONIS	ב שו צ	mda		boin				
		-	<u>15</u> 15	uuv	45	đəs	<u>- 15</u>	n V							17	91	. u	7	Taa [50NC †	∙1 'I	I7	, ազդ	c c hətri	mites	£661	·£861	Note:
			•					• •	Int	н (^н	unſ		(6M	Apr	Mar		<u>Feb</u>		Jan		nec		AONT	<u> </u>	0			
50	67	Ĺε	60	.												(ĐVI	ΥΥ	នទំរំយ	pera	məT	λĮųjū	oM a	Seray	∀ 06-	1961			
	100	<u></u>	65	34	97	81	<u> </u>	L	3	5	15	57_		45	24				85	64	14				_			
52	104	44	97	32	30	72	 71	13 13	<u>ve.0</u> 2-				6-1961							07		15	52	50	<u> </u>	50 200	44	-1961
53	LE	45	14	LE	82	14 14	71	01	6 L	6 6	12 12	54 77	8661	54	4				20	25	43	34	32	54	97	37	65	
53	32	45	43	22	LZ	22	8	9	Ē	οī		53 53	2661 9661	42	1				LS	25	38	33	ĹΖ	77	12	82	07	8661 2661
53 52	34	14	45	32	5 <i>L</i> 7	LI	15	01	П	ŽI	õi	52	\$661	43 41	2 2				79 20	84	97	82	54	50	54	ĨĒ	Ľε	9661
52	12 12	42 38	43	38	32	52	SI	2	14	15	8	97	7661	17 77	E E			79 89	95 09	67	75	15	58	52	54	52	40	\$661
97	εε	35 07	9E 8E	33 40	18 18	50	21 77	9	9	4	12	LZ	1663	40	I			89 55	15	24 22	44 41	9E 9E	12	97	54	54	43	1661
12	98	43	86	55	31 5¢	54 11	22 8	50 51	13	51	EI	52	7661	545	5				09	23	97	9£ 57	92 92	51 21	17 17	97	44	16661
72	38	45	¢0	ĒĒ	54	61	01	51	Е 8	9- 9	11	50	1661	45	8		1 8		85	48	65	ĨE	32		21 71	77 15	4] 36	Z661 1661
07	15	38	45	33	97	Δī	8	<u>9</u> -	9	8	13 11	5¢ 51	0661	74 75			-		85	٥٥	97	98	22	22	17		14	0661
22 22	50	38	40	40	LZ	61	01	9	ĩ	9	61	54	8861	45 42	9				09	05	41	15	51	12	77	92	05	6861
07	34	33 40	38 34	9E 8E	18	72	П	П	9	01	8	LZ	2861	57	7				89 E9	95 95	97	15	54	<u></u>	12	34	48	8861
81	54	34	57 57	82 82	54 56	21 61	21 9	7	13	4	1-	LI	9861	45	14				L9	15	23 44	35 41	31 54	72	54	92	48	L861
50	92	43	45	15	2Z	\$I	9 EI	[- 01	٤ 9	Е 01-	11 81		\$861	41	14	7 79			09	95	74 74	34	11 1	27 77	17 61	LI LZ	88	9861
12	<i>L</i> Z	43	40	18	54	εī	εï	ŝi	ÊI	4 10	13 01	54 55	1984	43	09				85	05	44	25	ĨĒ	72	14	LC	35 43	1985 1982
22 23	11	40	47	98	97	61	SI	9	1-	δī	61	72	7861	43 41	23				95	48	43	34	LZ	67	22	ĹΖ	14	1989
53	33	38 34	9E 8E	34	LZ	52	۶I	П	13	8	LI	54	1861	74	89		-		22 23	97	98	50	12	LI	22	98	41	2861
61	EE	85	38 8E	39 34	18 22	50 55		13	I	13	10	LZ	0861	43	52				ες 85	44 23	36 84	9E 67	22 92	34	50	32	9⊅	1861
61	11	98	88	67	97	72	12 13	9 E	01-	l	4	52	6261	11	23	59			09	05	86	30 75	32 77	LI L	31 51	57 77	81	0861
12	67	98	38	38	ĹŹ	61	II	εı	6- I-	3 10	01 11	52	8261	45	55				09	48	14	9E	72	61	51	22 50	817 917	6261 8261
12	50	38	0⊅	33	57	61	9	ñ	9	Ĭ	H	61 77	<i>LL</i> 61 9 <i>L</i> 61	43	99		-		- 95	48	48	67	ĨĒ	ĹΪ	97	25	57	LL61
6I	56	34	43	55	97	11	9	I-	Ē	01	Δī	77	<i>SL</i> 61	43 40	28 22		_		55	53	11	67	LZ	54	LZ	ĹŹ	It	9261
17 61	50 50	34 38	40 38	9E	54	22	11	13	I-	П	01	54	7261	15	52		-		23	44	50	54	51	61	97 [.]	33	20	SL61
61	12	8E	8E 9E	34 39	54 26		EI	3	[-	1-	13	LI	EL61	17	15				89 85	43 20	43 39	56 75	L7	LI	56	54	43	Þ761 -
07	97	45	34	55	5C LZ	LI 61	21 01	01 01	ς- -	1-	13	61	761	41	15		_		09	84	9E 6E	22 8E	97 21	61 51	51	57	17	E761
50	97	38	07	98	ĹΖ	\$I	8	11	4	9 01	01 SI	<i>L</i> I	1/61	11	05	02	. 8	9		ĩs	68		97	61	61 77	15 15	6E 6E	<i>7L</i> 61
81	33	98	38	15	LZ	22	Ê	ï	8-	£-	51 EI	۶۱ 22	0261 6961	14	05	89			09	٥٥	15	97	ĨĒ	61	L7	98	30 72	1261 0261
07 07	50	34	38	33	54	51	LI	ĪI	Ī	Ĕ- :	Î	97	8961	41 41	89	89				23	44	56	12	10	61	67	43	6961
50 17	33	39 34	38	34	56	EI	9	01	8	8	II.	22	2961	45	15	09 29	-		ES C	44	38	98	<i>L</i> Z	12	LI	IE	43	8961
61	72	85	40 38	23 23	27 24	12 55		4	5	ΙQ	51	97	9961	44	09	£9			23 22	. 48 23	32 88	56 35	L7	54	54	31	43	L961
50	LZ	34	75	34	57		-3 4	Þ 9	. П 9	<u>£</u>	П	52	\$961	68	68	09				74	82 62	17	54 54	51 97	<i>1</i> 2 17 ·	35	05	9961
50	34	98	98	34	97	LI	ľ.	9 11	9 71-	ъ П	51 51	50 24	796I	45	05	09	0)L 9	55	87	68	97	97 97	30 77	77	56 75	0S 0S	5961 7961
81	<i>L</i> Z	34	98	33	LZ	61	9	Ē	E-	Ê	51 8	7C 21	8961 7961	57	29	L9			95	15	68	ΖĒ	32	<i>L</i> I	67	98	84	E961
AVETARE	74 Sep	45	45	38	<u>57</u>	<u></u>	13	EI	ÕI	<u>9</u>	51	77	1961	41 44	23 48	£9	-			48	97	50	12	61	61	67	43	Z961
IsunnA	492	guA	lut	unf	Way	τqΑ	Mar	Feb	ust	Dec	NON	Oct	J.M	<u>92675</u>	VA da	<u>02</u> S 3n	_		59	<u> 20</u>	98	34	32	<u>L</u> Z	97	18	44	1961
	I				ын	AT 9g	יאבוט	,						leun		5 011	v l	nr i	unf	May	ıqA	Mar	ЧэЯ	nsl	Dec	٨٥N	Oct	λM
					, nur	IT an	OTAV I	V							•					1 / 1 / 1			_					

APPENDIX III. HISTORIC SNOW WATER EQUIVALENT ON TENDERFOOT CREEK EXPERIMENTAL FOREST

Snow water equivalents (SWE) have been measured at eight open and six closed-canopy snow courses on Tenderfoot Creek Experimental Forest starting in the 1993 water year (WY). Three snow pillows have been installed on TCEF. At Onion Park, one snow pillow is in the open with no canopy and a second is under the forest canopy; both were installed in 1993. At Stringer Creek, one snow pillow was installed in 1995 in the open. First-of-the-month SWE for January through May has been estimated for the snow courses using snow pillow data from Onion Park, Stringer Creek, Deadman Creek and Spur Park.

Correlations and procedures used to estimate the average of eight snow courses on Tenderfoot Creek Experimental Forest for 1961-1992 is on file at the Forestry Sciences Laboratory in Bozeman, Montana.

Correlations between individual stations and the average of eight sites and between individual adjacent stations is shown in this appendix.

C ...

Snow Course	Elevation (ft)	Period of Record (WY)
*Bubbling Springs ¹	7,430	1993-present
*County Line ¹	7,810	1993-present
*Dry Park	7,420	1993-present
*Farnes Meadow ¹	7,400	1993-present
*Lonesome Creek ¹	6,970	1993-present
*Onion Park ¹	7,410	1993-present
Onion Park Open Pillow	7,410	1994-present
Onion Park Canopy Pillow	7,410	1994-present
*Stringer Creek	6,550	1993-present
Stringer Creek Open Pillow	6,550	1996-present
*Sun Creek ¹	7,040	1993-present
Deadman Creek Pillow	6,450	1961-present
Kings Hill	7,500	1934-present
Spur Park Pillow	8,100	1961-present

Name, Elevation and Period of Record for Snow Water Equivalent Stations

*Eight original open snow courses, average elevation 7,254 ft. Average elevation of TCEF is 7,236 ft and average elevation of Deadman Creek and Spur Park is 7,275 ft.

¹Locations also having snow courses in forest canopy.

Tenderfoot Creek Experimental Forest First-of-the-month SWE*, inches

5

€₎

Water Year	Jan 1	Feb 1	Mar 1	Apr 1	May 1
1961	3.8	4.2	5.8	8.9	12.7
1962	6.0	8.8	10.8	13.8	9.7
1963	3.2	7.7	9.0	11.0	13.0
1964	3.7	8.6	12.3	16.6	17.7
1965	6.4	12.4	15.3	17.7	18.9
1966 1967	3.1 5.7	6.7	10.1	10.1	11.0
1968	8.8	12.1	16.4	19.9	22.9
1969	1	10.9	13.3	14.8	13.8
1970	5.1	10.3	11.6	12.4	7.4
1970	6.6	12.4	15.0	19.4	22.8
1971	5.7	11.7	14.3	18.3	18.6
	9.7	15.6	20.3	21.5	19.9
1967	3.9	5.6	6.6	8.1	9.6
1974	7.4	11.1	14.4	17.1	14.9
1975	5.6	10.5	12.2	15.6	18.3
1976	7.8	10.8	13.6	- 14.5	14.8
1977	5.8	11.1	14.6	18.7	16.0
1978	9.7	12.7	15.0	16.0	13.8
1979	6.1	10.0	12.1	13.1	12.0
1980	5.5	9.9	12.4	16.5	14.8
1981	5.1	9.1	11.3	14.5	13.7
1982	8.1	14.4	18.1	20.9	20.2
1983	4.0	5.7	7.1	8.4	9.1
1984	6.6	9.7	12.4	15.8	14.3
1985	6.4	9.8	12.1	15.4	14.0
1986	7.2	10.2	13.1	13.5	12.1
1987	3.9	6.2	7.8	11.1	7.9
1988	7.9	12.0	14.6	16.7	13.7
1989	4.0	8.5	10.1	13.6	13.4
1990	7.0	10.7	12.4	15.0	11.1
1991	6.3	10.1	11.5	15.0	16.5
1992	5.3	7.1	8.2	8.6	7.0
1993	7.0	10.5	11.9	13.3	15.5
1994	8.8	13.3	14.5	16.6	14.7
1995	7.0	9.6	10.5	14.6	18.4
1996	5.9	8.9	11.2	15.6	16.0
1997	10.7	13.5	16.8	18.7	19.6
1998	4.4	7.8	8.7	11.4	9.8
1961-90 average:	6.0	10.0	12.5	15.0	14.4
1961-98 min:	3.1	4.2	5.8	8.1	7.0
1961-98 max:	10.7	15.6	20.3	21.5	22.9

* Average, minimum and maximum first-of-the-month SWE values averaged from Bubbling Springs, County Line, Dry Park, Farnes Meadow, Lonesome Creek, Onion Park, Stringer Creek and Sun Creek snow courses. 1961-1992 values estimated from Spur Park and Deadman Creek snow pillows.

24

ŧ

				Stat	ion			
Date	Bubbling Springs	County Line	Dry Park	Farnes Meadow	Lonesome Creek	Onion Park	Stringer Creek	Sun Creek
Jan 1	6.5	7.4	6.9	6.6	5.1	6.2	4.0	5.5
Feb 1	10.7	11.9	10.7	11.0	8.6	10.7	7.0	9.5
Mar 1	13.3	14.7	13.1	13.8	10.8	13.5	8.9	12.0
Apr 1	16.0	17.6	15.5	16.5	13.0	16.3	10.8	14.4
May 1	15.3	16.9	14.9	15.8	12.5	15.6	10.3	13.9
	Onion Park Open Pillow	Onion Park Canopy Pillow	Stringer Creek Pillow				· .	
Jan 1	4.9	3.5	4.0			·····		
Feb 1	8.7	6.3	6.8					
Mar 1	11.1	8.0	8.6					
Apr 1	13.4	9.8	10.3					
May 1	12.9	9.8	9.9					

Estimated 1961-1990 Average January 1 Through May 1 Snow Water Equivalent, Inches

Tenderfoot Creek Experimental Forest Historic SWE for Snow Courses

		R ²
Average 8* TCEF snow courses	= 0.93 x Average Spur Park Pillow and Deadman Creek Pillow - 0.9	.98
Bubbling Springs	= 1.05 x Average $8\text{TCEF} + 0.2$.97
County Line	= 1.13 x Average 8TCEF $+ 0.6$.98
Dry Park	= 0.96 x Average 8TCEF + 1.1	.98
Farnes Meadow	= 1.10 x Average $8\text{TCEF} \pm 0$.99
Lonesome Creek	= 0.88 x Average 8TCEF - 0.2	.99
Onion Park	= 1.12 x Average 8TCEF - 0.5	.99
Onion Park Pillow	= 0.95 x Average 8TCEF - 0.8	.99
Stringer Creek	= 0.76 x Average 8TCEF - 0.6	.89
Stringer Creek Pillow	= 0.70 x Average 8TCEF - 0.2	.90
Sun Creek	= 0.99 x Average 8TCEF - 0.4	.98

First Month SWE, inches (based on data through 5/98)

*Average of Bubbling Springs, County Line, Dry Park, Farnes Meadow, Lonesome Creek, Onion Park, Stringer Creek and Sun Creek snow courses.

.

6

Ga

Tenderfoot Creek Experimental Forest Estimating Equations for Missing SWE for Snow Sites First Month SWE, inches (based on data through 5/98)

·	·	R ²
Bubbling Springs	= 0.92 x County Line - 0.2	.97
	= 1.09 x Dry Park - 1.0	.98
	= 0.95 x Farnes Meadow + 0.3	.95
	= 1.17 x Lonesome Creek + 0.5	.95
·	= 0.93 x Onion Park + 0.8	.95
	= 1.10 x Onion Park Pillow + 1.0	.98
County Line	= $1.05 \text{ x Bubbling Springs } +0.7$.97
	= 1.16 x Dry Park = 0.6	.98
	= 1.03 x Farnes Meadow + 0.6	.99
	= 1.00 x Onion Park + 1.2	.97
	= 1.18 x Onion Park Pillow + 1.6	.99
Dry Park	= 0.90 x Bubbling Springs + 1.2	.98
	= 0.85 x County Line + 0.8	.98
	= 0.87 x Farnes Meadow $+ 1.2$.98
	= 0.86 x Onion Park + 1.6	.98
	= $1.01 \text{ x Onion Park Pillow} + 2.0$.99
Farnes Meadow	= 1.01 x Bubbling Springs + 0.3	.95
	= 0.97 x County Line - 0.5	.99
	= 1.12 x Dry Park - 1.1	.98
	= 0.98 x Onion Park + 0.5	.99
	= 1.14 x Onion Park Pillow + 1.0	.99
Lonesome Creek	= $0.82 \text{ x Bubbling Springs} \pm 0$.95
	= 1.18 x Stringer Pillow + 0.8	.94
	= 0.89 x Sun Creek + 0.3	.98

Estimating Equations for SWE (continued)

Onion Park	= 1.03 x Bubbling Springs - 0.2	.95
	= 0.98 x County Line - 0.8	.97
	= 1.15 x Dry Park - 1.6	.98
	= 1.01 x Farnes Meadow - 0.4	.99
	= 1.16 x Onion Park Pillow + 0.6	.99
Onion Park Pillow	= 0.89 x Bubbling Springs - 0.8	.98
	= 0.84 x County Line - 1.2	.99
	= 0.98 x Dry Park - 1.8	.99
	= 0.86 x Farnes Meadow - 0.8	.99
Stringer Creek	= 0.80 x Lonesome Creek - 0.2	.94
	= 1.10 x Stringer Creek Pillow - 0.4	.99
Stringer Creek Pillow	= 0.80 x Lonesome Creek - 0.2	.94
	= 0.90 x Stringer Creek + 0.5	.99
	$= 0.72 \text{ x Sun Creek} \pm 0$.94
Sun Creek	= 1.11 x Lonesome Creek - 0.2	.98
	= 1.32 x Stringer Creek Pillow + 0.6	.94

5

୍ତ୍ର

28

ł

APPENDIX IV. HISTORIC MONTHLY PRECIPITATION ON TENDERFOOT CREEK EXPERIMENTAL FOREST

Precipitation has been measured at eight storage gages since October 1992 (1993 WY). Two additional storage gages were installed more recently at Passionate Creek and Upper Stringer Creek.

Monthly data has been correlated between the ten data sites and the average of the eight original gages has been correlated with SNOTEL precipitation data from Deadman Creek and Spur Park. Data and procedures used to estimate historic precipitation data is on file at the Forestry Sciences Laboratory at Bozeman, Montana.

Tipping bucket precipitation gages are at Onion Park and Stringer Creek, but only summer precipitation had been collected from 1993 to 1997. In 1997, these gages were modified with a tipping bucket storage gage (TIPSTOR) to collect both frozen and non-frozen precipitation; however, this tipping bucket data has not been analyzed.

*The TIPSTOR is a storage type gage that mounts above the tipping bucket gage. It has an antifreeze solution with an oil layer that floats atop the solution. Overflow from this container is proportional to the precipitation that is falling; overflow is directed through the tipping bucket mechanism and measured similarly to rainfall passing through the tipping bucket. The TIPSOR (<u>Tipping Bucket Storage Gage</u>) was developed by Farnes and McCaughey and reported in McCaughey and Farnes. (1996). [Measuring winter precipitation with an antifreeze-based tipping bucket system. In: Troendle, Charles, ed. 64th Annual Meeting of the Western Snow Conference; 1996 April 15-18; Bend, OR. Fort Collins, CO: Colorado State University: 130-136.]

	a renou or Record for Fi	ecipitation Stations				
Precipitation Station	Elevation (ft)	Period of Record (WY)				
Tenderfoot Creek Experimental Forest						
*Bubbling Springs	7,430	1993-present				
*County Line	7,810	1993-present				
*Dry Park	7,420	1993-present				
*Farnes Meadow	7,400	1993-present				
*Lonesome Creek	6,970	1993-present				
*Onion Park	7,410	1993-present				
Passionate Creek	6,250	1995-present				
*Stringer Creek	6,550	1993-present				
*Sun Creek	7,040	1993-present				
Upper Stringer	6,870	1997-present				
SNOTEL	· · ·	•				
Deadman Creek	6,450	1967-present				
Spur Park	8,100	1967-present				

Name, Elevation and Period of Record for Precipitation Stations

6

8

Q}

*Eight original storage precipitation gages with average elevation of 7,254 ft. Average elevation of Tenderfoot Creek Experimental Forest is 7,236 ft and average elevation of Deadman Creek and Spur Park is 7,275 ft.

*

	Water	1												J
	Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	·	Sam	Annual
	1967	1.4	2.8	3.6		5.0	4.3					Aug 0.9	Sep 1.8	Total
	1968	2.4	2.4	5.5	2.4	2.7	1.6						1.8 3.6	39.3
	1969	1.2	3.2	2.2	5.7	1.6	1.2		2.2			3.9	5.0 1.1	35.7
	1970	4.2	1.9	2.9	6.1	2.6	4.9	4.1	5.0		1.6	9.9 0.9	2.2	29.5
	1971	1.2	3.5	2.5	6.2	3.3	4.2	3.9	2.5			2.0	2.2 0.8	39.3
	1972	1.2	2.2	7.6	6.8	4.7	3.1	2.0	2.4	2.0		3.0	0.6	34.2
	1973	1.0	1.5	3.0	1.8	1.1	2.0	2.8	1.6	2.7	2.0	2.3	2.4	38.2
	1974	2.3	4.1	4.0	4.0	3.4	3.2	3.5	6.4	1.2	2.0	4.7	0.9	24.0
	1975	1.1	1.8	4.3	5.2	1.9	3.6	3.9	4.5	6.9	2.1	2.9	1.7	39.8
	1976	5.1	4.6	2.4	3.2	2.8	1.4	4.1	2.0	3.8	1.7	2.9	1.7	40.1 34.9
	1977	0.4	2.9	3.0	3.1	1.9	4.5	2.2	3.6	1.7	2.7	2.0 1.6	1.7	29.3
	1978	2.2	3.6	7.5	4.4	2.8	2.7	2.2	3.3	4.2	5.0	2.7	2.9	43.4
	1979	0.3	3.3	4.7	2.2	3.8	1.8	2.8	1.6	4.4	1.1	1.4	0.6	43.4 28.1
	1980	1.3	1.4	1.7	2.7	2.0	4.2	1.5	5.7	4.1	1.0	2.4	0.9	28.1
	1981	3.5	1.4	3.0	1.1	2.0	3.4	2.7	6.7	4.0	2.9	0.7	0.5	32.0
	1982	3.0	2.3	2.7	5.0	1.8	3.8	3.7	4.2	3.6	2.7	0.7	2.6	36.2
	1983	1.0	2.5	3.6	1.9	2.0	3.3	2.3	3.0	3.9	3.6	0.6	2.9	30.6
	1984	2.2	2.9	2.7	2.1	1.8	4.3	3.1	2.3	2.7	0.0	1.5	2.5	28.0
	1985	2.4	2.8	3.1	1.2	3.0	3.5	2.2	2.6	1.2	0.2	4.1	5.6	31.9
	1986	3.3	3.7	2.4	2.8	3.5	1.8	3.4	3.3	3.4	4.2	1.6	2.7	36.1
	1987	0.7	2.5	1.2	1.3	1.4	3.1	0.5	4.5	0.9	3.5	0.8	1.0	21.3
	1988	0.5	0.5	2.8	3.5	3.6	3.4	3.1	2.5	1.9	1.5	0.7	1.8	25.9
	1989	1.7	1.9	3.3	5.0	1.8	3.9	3.1	2.5	3.7	3.4	3.6	2.0	35.8
	1990	1.6	3.4	5.7	3.9	1.8	3.1	2.5	5.3	1.7	1.1	2.6	0.3	32.9
	1991	2.2	2.5	3.5	3.8	1.1	4.5	7.0	5.6	2.1	1.0	0.6	2.6	36.4
	1992	1.4	3.1	2.6	1.9	1.2	1.4	3.6	2.5	4.3	2.3	1.2	2.1	27.5
	1993	1.8	2.0	2.4	2.9	1.3	2.2	3.3	4.3	6.2	8.7	7.1	2.7	44.9
	1994	2.3		2.5	3.8	2.0	1.9	3.8	2.5	2.5	1.5	0.5	0.5	25.6
	1995	0.5	3.2	1.7	3.1	1.1	3.5	4.3	4.1	6.2	5.1	2.3	2.5	37.6
	1996		2.5	1.2	2.6	2.4	2.6	2.8	6.2	2.1	1.3	0.9	2.4	29.9
	1997			4.4	2.4	2.6	2.7	2.6	4.7	5.8	2.8	3.8	1.3	36.9
-				1.7	3.1	0.6	2.4	2.0	3.8	7.1	2.4	2.8	0.5	29.0
1	961-1990													
		1.9	2.6	3.7	3.9	2.8	3.1	2.9	3.7	3.2	2.2	2.0	1.8	33.8
						•								

Tenderfoot Creek Experimental Forest Monthly Precipitation*, inches

* Average of Bubbling Springs, County Line, Dry Park, Farnes Meadow, Lonesome Creek, Onion Park, Stringer Creek and Sun Creek storage gages. 1967-1992 and 1961-1990 averages estimated from Spur Park and Deadman Creek SNOTEL sites.

ź

Tenderfoot Creek Experimental Forest Historic Precipitation Estimates for Storage Gages Monthly totals, inches (based on data through 6/98)

		R ²
Average 8TCEF	= 0.98 x Average Spur Park and Deadman Creek ± 0	.81
Bubbling Springs	= 0.97 x Average 8TCEF + 0.1	.96
County Line	= 1.03 x Average $8\text{TCEF} + 0.1$.94
Dry Park	= 0.95 x Average 8TCEF + 0.1	.99
Farnes Meadow	= 1.07 x Average 8TCEF - 0.1	.99
Lonesome Creek	= 0.91 x Average $8\text{TCEF} \pm 0$.97
Onion Park	= 1.04 x Average $8\text{TCEF} \pm 0$.99
Passionate Creek	= 0.92 x Average 8TCEF - 0.3	.96
Stringer Creek	= 0.97 x Average 8TCEF - 0.1	.96
Sun Creek	= 1.03 x Average 8TCEF - 0.1	.98
Upper Stringer	= 1.03 x Average 8TCEF - 0.1	.97

Average 8TCEF = Average monthly precipitation for Bubbling Springs, County Line, Dry Park, Farnes Meadow, Lonesome Creek, Onion Park, Stringer Creek, and Sun Creek Spur Park = Monthly precipitation at Spur Park SNOTEL site Deadman Creek = Monthly precipitation at Deadman Creek SNOTEL site

				S	Station			
Month	Bubbling Springs	County Line	Dry Park	Farnes Meadow	Lonesome Creek	Onion Park	Passionate Creek	Stringer Creek
Oct	2.0	2.1	1.9	1.9	1.7	2.0	1.5	1.8
Nov	2.7	2.8	2.6	2.7	2.4	2.8	2.1	2.5
Dec	3.7	3.9	3.6	3.8	3.3	3.8	3.1	3.5
Jan	3.9	4.1	3.8	4.0	3.5	4.0	3.3	3.7
Feb	2.8	3.0	2.8	2.9	2.5	2.9	2.3	2.6
Mar	3.1	3.3	3.0	3.2	2.8	3.2	2.5	2.9
Apr	2.9	3.1	2.8	3.0	2.6	3.0	2.4	2.7
May	3.7	3.9	3.6	3.8	3.3	3.8	3.1	3.5
Jun	3.2	3.4	3.1	3.3	2.9	3.3	2.6	3.0
Jul	2.2	2.4	2.2	2.3	2.0	2.3	1.7	2.0
Aug	2.1	2.2	2.1	2.1	1.9	2.1	1.6	1.9
Sep	1.9	2.0	1.9	1.9 1.9 1.7		1.9	1.4	1.7
Annual	34.2	36.2	33.4	34.9	30.6	35.1	27.6	31.8
	Sun Creek	Upper Stringer						- <u></u>
Oct	1.9	1.9						
Nov	2.6	2.6						
Dec	3.7	3.7						
Jan	3.9	3.9						
Feb	2.8	2.8						
Mar	3.1	3.1						
Apr	2.9	2.9						
May	3.7	3.7						
Jun	3.2	3.2						
Jul	2.2	2.2						
Aug	2.0	2.0						
Sep	1.8	1.8						
Annual	33.8	.33.8						

Estimated 1961-1990 Average Monthly Precipitation, Inches

33

*

		R ²
Bubbling Springs	= 1.00 x Dry Park + 0.1	.93
	= 0.90 x Farnes Meadow + 0.2	.94
	= 1.04 x Lonesome Creek + 0.1	.93
	= 0.92 x Onion Park + 0.2	.95
	= 0.92 x Sun Creek + 0.3	.94
County Line	$= 1.08 \text{ x Dry Park} \pm 0$.95
	= 0.97 x Farnes Meadow + 0.1	.96
	= 0.98 x Onion Park + 0.1	.93
Dry Park	= 0.94 x Bubbling Springs + 0.1	.93
	= 0.88 x County Line + 0.1	.95
	= 0.89 x Farnes Meadow + 0.1	.99
	= 0.91 x Onion Park + 0.1	.98
	= 0.90 x Upper Stringer + 0.2	.95
Farnes Meadow	= 1.06 x Bubbling Springs ± 0	.94
	$= 0.99 \text{ x County Line} \pm 0$.96
	= 1.11 x Dry Park - 0.1	.99
	= 1.01 x Onion Park ± 0	.98
	= 1.01 x Upper Stringer + 0.1	.96
onesome Creek	= $0.90 \text{ x Bubbling Springs } \pm 0$.93
	= 0.91 x Stringer Creek + 0.2	.96
	= 0.87 x Sun Creek + 0.2	.97
nion Park	= $1.03 \text{ x Bubbling Springs } \pm 0$.95
	= 0.95 x County Line + 0.1	.93
	$= 1.08 \text{ x Dry Park} \pm 0$.98
	= 0.97 x Farnes Meadow + 0.1	.98
	= 0.99 x Sun Creek + 0.2	.96

Tenderfoot Creek Experimental Forest Equations for Estimating Missing Precipitation Data for Storage Gages Monthly totals, inches (based on data through 6/98)

C

C

34

#

Estimating Equations for Missing Precipitation Data (continued)

Passionate Creek	= 0.99 x Lonesome Creek - 0.3	.94
	= 0.94 x Stringer Creek - 0.2	.97
Stringer Creek	= 1.05 x Lonesome Creek - 0.1	.96
	= 1.03 x Passionate Creek + 0.2	.97
	$= 0.93 \text{ x Sun Creek} \pm 0$.97
	= 0.93 x Upper Stringer ± 0	.97
Sun Creek	= 1.02 x Bubbling Springs - 0.1	.94
	= 1.11 x Lonesome Creek - 0.1	.97
•	= 0.97 x Onion Park - 0.1	.96
e de la construcción de la constru La construcción de la construcción d	= $1.04 \text{ x Stringer Creek} \pm 0$.97
	$= 0.99 \text{ x Upper Stringer} \pm 0$.98
Upper Stringer	= 1.06 x Dry Park - 0.1	.95
	$= 0.95 \text{ x Farnes Meadow} \pm 0$.96
	= 1.04 x Stringer Creek + 0.1	.97
	= 0.99 x Sun Creek + 0.1	.98

APPENDIX V. HISTORIC MONTHLY STREAMFLOW FOR TENDERFOOT CREEK BELOW STRINGER CREEK

Daily streamflow has been measured at Sheep Creek near White Sulphur Springs since 1942. This drainage heads in the Little Belt Mountains about 12 miles ESE of Tenderfoot Creek headwaters. There are some hydrologic differences between Sheep Creek and Tenderfoot Creek. Timber harvesting has occurred in the Sheep Creek drainage which might also affect the relationship. However, this is the only active long term streamflow measuring station on streams flowing out of the Little Belt Mountains that can be used for correlations.

Streamflows have been measured on Tenderfoot Creek Experimental Forest beginning with the 1993 WY. For this report, only the Lower Tenderfoot station (Tenderfoot Creek below Stringer Creek) was analyzed. Correlations and estimating equations were developed for monthly flows April through July. The August and September flows were analyzed together as were the October through March flows.

Correlations, procedures and analyses are on file at the Forestry Sciences Laboratory in Bozeman, Montana.

Following are monthly flows for Tenderfoot Creek below Stringer Creek in acre-feet starting in 1942 WY. The estimated flows (1942-1992) can be used to determine variability by month, season and year, but should be viewed with caution when referring to the streamflow for any specific month.

Tenderfoot Creek Experimental Forest Tenderfoot Creek below Stringer Creek Monthly Streamflow in Acre-feet

_w	Y Oc	t N	ov.	Dec	Ja	1Fe	bM	or A	Dr	Ma		_					sum	sum	sum
194	-	00	80	75				70	162	<u>Ma</u> 288			<u>Jul</u>		ug 251	Sep_	Oct-Ma	r Apr-Se	ot Oct-Sept
194			120	110	11	0		95	304	175					251 218	141	460		
194			115	110				10	142	116					204	128 150	618		
194 194	-		130	120					157		688 373				210	187	700		-
194		86	80	75					384	259		33	4		.99	181	436	-	
194	-		31 70	75	7				154	326			28		44	177	619	794	
194		-	70 69	150 130	13				139	345			47	1 4	50	260	821	873	
195			85	80	11				177	283			31	-	75	136	857	555	
195			99	80	6	-			152 136	67			39			212	459	610	6 6565
1952	2 9		40	85	7:	-	-		287	311: 343(27			150	516	732:	5 7841
1953			90	80	70	-			140	178			38 47			121	443	592	
1954			60	50	50				43	1422			28	_		170 138	480	6403	
1955	1		58	60	55			0 1	62	1150			70			185	350 379	439(6676	
1956 1957				103	100				36	2055			532			116	653	3835	
1957			78	60	40				50	2343			300			43	391	5493	
1958			70 55	65	60				50	2234			506			06	377	3123	
1960			3	60 43	58 55				44	1793			297		6 1	66	395	7560	-
1961	70			55	50	60 - 50			43	1547			390			41	447	4520	4967
1962	100	-		75	70	65			52 51	853 2607			631			13	340	2561	2901
1963	128			10	100	90				2007			328			43	460	6408	6868
1964	125			10	105	100	110			3454	4818		324 407	23 29		87	643	6560	7203
1965	153			20	110	95	105			3410	3955		1685	49		31	665	9349	10014
1966	446		-	60	140	130	233		72	3296	2443		278	27		87	713 1371	10101 6654	10814
1967 1968	119			75	70	65	75			3109	3836		644	362		57	490	8357	8025 8847
1968	197 224			50	130	115	125			3366	4582		388	37		12	887	9089	9976
1970	163	147 102		30	115	100	110			2395	620		278	227	7 17	70	826	4060	4886
1971	150	96		30 53	70 60	60	75	15		3339	4304		444	360		2	550	8821	9371
1972	122	96		15	75	55 70	65 80	13		3425	3628		285	229			489	7880	8369
1973	100	90	-	0	70	65	75	_13 13		3125 461	4757		278	275			528	8725	9253
1974	70	60		0	50	50	70	114		3144	442 4749		375 512	189			480	1753	2233
1975	115	73		0.	55	50	70	144		1728	2705		1674	388 461	23 23		350	10175	10525
1976	224	150			100	95	120	440		3131	2795		317	340	25		423 804	6949 7286	7372
1977	109	66	4		40	38	70	287	73	3197	1704		315	206	16		369	7286 5873	8090 6242
1978 1979	212	163	19		163	184	215	324		8217	4833		3546	617	40		1128	12944	14072
1980	319 178	197 169	24 ⁻ 14 ⁻		78	163	200	285		350	4347		403	332	23		1304	8948	10252
1981	230	109	209		20 50	99 181	253	163		862	1390		307	246	154	ŧ	966	3122	4088
1982	172	147	242		15	106	236 89	156 140	-	379	3593		295	253	17		1203	7847	9050
1983	271	259	265	-	56	221	224	139		360 373	4854 1834		772	391	260		871	8777	9648
1984	227	188	166		88	227	332	237		900	3217		717 278	481	242		1496	4786	6282
1985	135	200	96	5 1	19	109	271	1100		534	800		477	255 299	193 264		428	7080	8508
1986	419	378	163		50	169	200	534		440	4463		330	315	308		930 479	5474 9390	6404 10869
1987	265	212	209		75	147	194	146	(650	600		575	116	127		202	2214	3416
1988 1989	419 80	280	250		00	150	166	136		435	700		537	123	108		465	4039	5504
1990	141	70 236	65		55	50	75	155		343	2237		315	244	206		395	5500	5895
1991	218	112	125 102			112	178	541		217	4323		297	294	212	1	917	8884	9801
1992	206	102	125	11		131 89	131 119	136		107	4560		286	251	193		793	8833	9626
1993	92	83	80		4	61	74	137 144		00	420		359	199	170		760	1685	2445
1994	571	444	417	37		287	240	1121	32	92 61	1962 993		845 396	1398	1172				11277
1995	162	184	151	13	9 1	16	118	121	13		4912		292	234 400	196 254		336	6801	9137
1996	239	207	193	17	4 14	14	142	253	28		3864		552	282	254 179		370)99	8292 7971	9162
1997	221	210	193		9 11		123	176	34		4335		572	396	256)40		9070 10299
<u>1998</u> 1961-199	<u>229</u>	<u>198</u>	193	17	9 1	14	129	230	21		2520		306	424	249)42	6840	<u></u>
1701+199	189	ge: 153	121			07													
	,	1.75	131	11'	/ 1	07	141	273	260	05	2994	6	500	300	214	. 8	38	6986	7826
															•				

1942-1992 estimated from Sheep Creek near White Sulphur Springs