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Abstract
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versus untreated contrasts. Effect sizes varied widely and the most informative grouping of 
studies distinguished three vegetation types and three types of fuel treatment. The resul-
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in reported observations of fuel treatment effectiveness. Our synthesis highlights several 
considerations that both support and inform the current fuels management paradigm.
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Introduction _____________________________________
Changes in land use and management over the last century or more have in-
creased the vertical and horizontal continuity of wildland fuels in many areas 
of North America (Pyne 1982, but see Keeley and Fotheringham [2001] and 
Johnson and others [2001] for discussion of exceptions). This increase in fuel 
hazard is compounding with climate change (Brown and others 2004) and ex-
urban development (Cova and others 2004) to place ever more values at risk to 
wildfire damages. While the problem has been recognized for decades (Cooper 
1960), political and land management attention on mitigating hazardous fuels 
has recently increased (Stephens and Ruth 2005), piquing an interest for more 
research into the effects and effectiveness of these activities (Botti and others 
1998). Consequently, the volume of fuel treatment studies has expanded greatly 
over the past decade (figure 1), spawning a number of literature reviews to syn-
thesize findings (Hudak and others 2011; table 1).

Figure 1—Cumulative number of fuel treatment effectiveness pub-
lications by year and type of study:
1A = observed wildfire response to actual fuel treatment, 1B = 
simulated wildfire response to actual fuel treatment, 2B = simulated 
wildfire response to hypothetical fuel treatment.
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A paradigm for fuels management has emerged from these reviews that empha-
sizes the importance of first distinguishing ecosystems where fire was historically 
frequent and benign while limited primarily by fuel quantity (such as dry conifer 
forests) from those where fire was historically infrequent and stand-replacing 
while limited more by climate (such as sub-arctic and sub-alpine forests or 
California chaparral). The paradigm suggests that large-scale fuels management 
may be inappropriate and counter-productive in the latter types of ecosystems 
(Johnson and others 2001; Keeley and Fotheringham 2001), but should be suc-
cessful in the former to the degree that more resilient conditions result from 
reducing surface fuels, removing ladders, opening canopies, and selecting for 
fire resistance (such as by leaving large trees), in that order (Agee and Skinner 
2005). Keeley and others (2009) noted that empirical studies in lower-elevation 
western conifer forests consistently demonstrate reduced wildfire severity from 
combinations of thinning and burning, but caution that the slash produced by 
thinning will exacerbate fire hazard until it is also treated. Guidance is less clear 
for ecosystems where the interactions among fire, weather, and fuels are more 
complex and the historic fire regime was a mixture of frequencies and severi-
ties (such as mesic mixed forests at middle elevations and latitudes). Thus, the 
recommendation for fuels management in these systems has been for limited 
and cautious application (Schoennagle and others 2004).

However, traditional literature reviews are inherently qualitative in their synthe-
ses of the information provided in research reports (Cooper and others 2009). 
They are also prone to bias in selection and interpretation of findings and tend to 
over-emphasize contradictory conclusions with inadequate attention to sources 

Table 1—Recent literature reviews related to fuel management that were used to identify studies to consider 
for inclusion in our synthesis. The Joint Fire Science Program database of final reports for com-
pleted projects (www.firescience.org) was also searched.

 1. Greenlee, J.M.; Sapsis, D.B. 1996. Prefire effectiveness in fire management: A summary and a review 
of the state-of-knowledge. Fairfield, WA: International Association of Wildland Fire.

 2. Carey, H.; Schumann, M. 2003. Modifying wildfire behavior—the effectiveness of fuel treatments. 
Santa Fe, NM: National Community Forestry Center Southwest Region Working Paper #2.

 3. Martinson, E.J.; Omi, P.N. 2003. Performance of fuel treatments subjected to wildfires. USDA Forest 
Service Proceedings RMRS-P-29: 7-14.

 4. Fernandes, P.M.; Botelho, H.S. 2003. A review of prescribed burning effectiveness in fire hazard re-
duction. International Journal of Wildland Fire 12: 117-128.

 5. Graham, R.T.; McCaffrey, S.; Jain, T.B. 2004. Science basis for changing forest structure to modify 
wildfire behavior and severity. USDA Forest Service General Technical Report RMRS-GTR-120: 143.

 6. Agee, J.K.; Skinner, C.N. 2005. Basic principles of forest fuel reduction treatments. Forest Ecology 
and Management 211: 83-96.

 7. Peterson, D.L.; Johnson, M.C.; Agee, J.K.; Jain, T.B.; McKenzie, D.; Reinhardt, E.D. 2005. Forest 
structure and fire hazard in dry forests of the Western United States. USDA Forest Service General 
Technical Report PNW-GTR-628: 1-30.

 8. Keeley, J.E.; Aplet, G.H.; Christensen, N.L.; Conard, S.C.; Johnson, E.A.; Omi, P.N.; Peterson, D.L.; 
Swetnam, T.W. 2009. Ecological foundations for fire management in North American forest and shru-
bland ecosystems. USDA Forest Service General Technical Report PNW-GTR-779: 1-92.
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of variability. Since 1955, the medical sciences have relied instead on an alterna-
tive approach to research synthesis using the techniques of meta-analysis (Stroup 
and others 2000).

Meta-analysis is a systematic and quantitative approach to research synthesis that 
combines and compares results from independent trials to assess the direction, 
magnitude, and consistency of reported responses (Cooper and others 2009). 
Meta-analysis is now commonly applied to ecological questions (Gurevitch 
and others 2001) and has been recently applied to the wildland fuels treatment 
literature, as well (Martinson 1998, Wan and others 2001, Kopper 2002, Boerner 
and others 2009, Kalies and others 2010, Youngblood 2010). Kopper and others 
(2002, 2009) conducted a meta-analysis on the effects of prescribed fire on fuel 
reduction. The focus of the current meta-analysis is on the literature documenting 
fuel treatment performance in mitigating subsequent fire intensity and severity 
to assess the empirical support for the current fuel management paradigm.

Methods ________________________________________
Meta-analysis involves a comprehensive literature search for relevant studies, 
quantification of the magnitude of effects reported in the studies selected for 
inclusion, and an analysis of study heterogeneity to identify the strength and 
significance of any emergent trends. Robust methods for extracting and analyzing 
data embedded in disparate studies contribute to the strength of meta-analytic 
investigations.

Literature Search
Our literature search employed eight documents (table 1) as sources to iden-
tify the scientific publications relevant to our meta-analysis. These sources are 
traditional literature reviews that address fuel management issues and all refer-
ences cited in them were subjected to an initial screening, as was any subsequent 
document published prior to September 1, 2009, that included at least one of the 
reviews in its literature cited (as identified by Google Scholar [http://scholar.
google.com]). Final reports submitted to the Joint Fire Science Program (http://
www.firescience.gov) prior to June 1, 2010, were also screened for relevant data 
and additional publications.

Study Selection
The initial screening broadly categorized all identified publications (n = 1213) 
based on the characteristics of the fuel treatments investigated (actual treatment 
[n = 280], hypothetical or planned treatment [n = 97], or no fuel treatment [n = 836]) 
and the response variable analyzed (actual fire characteristic [n = 105], simulated 
fire characteristic [n = 161], or no fire characteristic reported as a response variable 
[n = 947]). All publications that included information from actual fuel treatments 
exposed to actual fire (n = 60) were thoroughly reviewed and coded with respect 
to the following information: study design, location, dominant vegetation, fuel 
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and fire variables measured, and treatment characteristics reported (Appendix A). 
Publications that did not include both a fuel treatment and a subsequent fire 
test were outside the focus of our meta-analysis, while simulation studies were 
excluded from further consideration for being more theoretical than empirical 
and overly encumbered by inherent inconsistencies in investigator assumptions 
and model errors (Cruz and Alexander 2010).

Studies of fuel treatment performance generally employ one of three basic designs: 
pre-planned block experiments (n = 9) burned intentionally or serendipitously, 
retrospective paired comparisons of treated and untreated areas affected by 
wildfire (n = 18), and landscape or regional surveys of wildfire severity or area 
burned (n = 33). Most of the latter lacked any semblance of control for variations 
in weather and topography (n = 28) and were excluded from further analysis, 
though recent advances in the application of spatial statistics show promise of 
improved information from such studies in the future by accounting for auto-
correlated influences on fire behavior (for example, Wimberly and others 2009).

A variety of response variables are reported in the fuel treatment performance 
literature, and many report more than one measure. Among the 32 publications 
that remained under consideration for our meta-analysis, reported response vari-
ables comprised flame length (n = 7), fire spread rate (n = 5), percent canopy 
consumption (n = 6), percent canopy scorch (n = 11), scorch height (n = 7), 
bole char height (n = 8), percent mortality (n = 8), categorical canopy damage 
rating (n = 10), categorical ground char rating (n = 9), remotely sensed severity 
(n = 4), and area burned (n = 2). Rather than restricting our analysis to a single 
response or performing separate meta-analyses for each, we used correlation 
and simple regression analysis to determine if any could be reasonably treated 
as substitutes for one another and combined in a single meta-analysis. This 
allowed inclusion of a broader range of vegetation and treatment types in our 
meta-analysis, but also may have introduced additional error, so we compared 
the results of our meta-analysis with and without incorporating response variable 
substitution. Publications that reported responses with metrics that could not be 
equated to others were reserved for potential separate meta-analyses, resulting 
in the exclusion of 13 additional publications from the primary meta-analysis 
and a remainder of 19.

Data Extraction
Central to any meta-analysis is the calculation of effect sizes: dimensionless 
measures of the magnitude of difference between treatment and control means 
reported in the selected publications. Hedge’s d (Hedges and Olkin 1985) is the 
conventional effect size metric for difference data (such as treatment-control 
comparisons), but the log response ratio (Hedges and others 1999) has been found 
to be a more flexible metric for meta-analysis of ecological and natural resource 
studies (Kopper and others 2009). The log response ratio is calculated as a treat-
ment mean divided by a control mean with the ratio log transformed, and is the 
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measure of effect size used in in the current application. Data on responses and 
explanatory variables were extracted and effect sizes were calculated for the 19 
publications selected for inclusion in a step-wise analysis of heterogeneity using 
MetaWin software (Rosenberg and others 2000).

Our primary hypothesis was that there would be broad differences in effects 
reported from different types of ecosystems, as defined by general categories 
of geographic location (Northwestern, Southwestern, and Eastern United States 
and outside of the continental United States) and vegetation (long-needle conifer 
forests, mixed conifer forests, other woodlands, and grasslands). We also hy-
pothesized that fuel treatment effects would vary among different types of fuel 
treatment. Treatments were categorized for comparisons into six broad types 
based on expected change to canopy and surface fuels (table 2).

Many of the 19 studies selected for inclusion in the meta-analysis contained 
information from more than one treatment type, and these were considered in-
dependent observations such that a total of 62 were included; their distribution 
among vegetation, region, and treatment categories is summarized in table 2 and 
listed along with reported responses and calculated effect sizes in Appendix B. 
Any remaining variability in effect sizes within the ecosystem and treatment 
categories was explored for relationships to treatment age and treatment intensity, 
as indicated by changes to measured fuel conditions.

Table 2—Distribution of observations included in the meta-analysis among treatment 
type categories within vegetation and region groups.

 Treatment typea

 1 2 3 4 5 6 Total
Vegetation
Long-needle pine forest 6 12 1 1 0 3 23
Mixed conifer forest 9 6 1 0 1 13 30
Woodlands other than conifer forest 0 2 0 2 0 1 5
Grasslands 0 2 0 2 0 0 4

Total 15 22 2 5 1 17 62
Region
Northwest U.S. 9 6 2 1 1 7 26
Southwest U.S. 6 8 0 0 0 9 23
Eastern U.S. 0 3 0 4 0 1 8
Non-U.S. 0 5 0 0 0 0 5
 a Treatment descriptions in order of expected effectiveness (most to least):
 1. Canopy thinned with slash and surface fuels reduced by burning or mechanical removal.
 2. Canopy untreated, but surface fuels reduced by burning, mechanical removal, or grazing/

browsing by livestock or other biological vectors.
 3. Canopy thinned with no change to surface fuels via whole tree extraction.
 4. Canopy untreated, but surface fuels rearranged by physical or chemical means (mastication, 

chipping, crushing, piling, herbicide application).
 5. Canopy thinned with slash and surface fuels rearranged as above.
 6. Canopy thinned with no treatment of the activity fuels added to the surface.
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Data Analysis
Meta-analyses of classically designed laboratory experiments typically employ 
parametric fixed effects statistical models that weight each study by its sample 
size and variance. However, field studies in ecology (Adams and others 1997) 
and especially in wildland fire research (Van Mantgem and others 2001) are 
more often observational than experimental, rarely conform to parametric as-
sumptions, and are generally pseudo-replicated (in the sense of Hurlbert 1984). 
Measures of variability are thus often misspecified or unreported and any con-
ditional weighting scheme would seem capricious. Kopper and others (2009), 
for example, could find only eight studies that met the criteria for inclusion in 
a parametric fixed-effects meta-analysis of fuel reduction by prescribed fire in 
ponderosa pine, even though it is unlikely there is another fuel treatment topic 
more thoroughly studied.

Adams and others (1997) suggested that mixed-effects and/or non-parametric 
meta-analysis may be most appropriate for many ecological topics. A non-para-
metric meta-analysis that employs randomization procedures (that is, resampling 
and bootstrapping) to estimate within-group effect size distributions and tests of 
between-group heterogeneity is analogous to a mixed-effects model (Gurevitch 
and Hedges 1999). Given the limited number of studies that address our topic of 
interest and their general inability to strictly adhere to parametric assumptions, 
we erred on the side of inclusiveness in using an unweighted, non-parametric, 
mixed-effects model for this meta-analysis. Kalies and others (2010) similarly 
found the relaxed assumptions of this model formulation most useful for their 
meta-analysis of wildlife responses to fuel treatments in the Southwest. We 
also followed Adams and others’ (1997) recommendation of 4999 resampling 
iterations for significance tests and the use of bias-correction for bootstrapped 
confidence intervals.

Nonetheless, an unweighted meta-analysis is more prone to bias from small stud-
ies. We performed diagnostic checks for the potential influence of small study 
bias on our meta-analysis with funnel plots and correlation analysis of study size 
versus effect size (Rothstein and others 2005). However, statistical reporting is 
inconsistent across the publications synthesized in our meta-analysis, including 
the definition of a sampling unit. We therefore determined the apparent number 
of distinct treatment units sampled for each study as the measure of its relative 
size for purposes of our bias diagnostics.

Parametric meta-analyses proceed with study segregation and tests for between-
group heterogeneity until within-group heterogeneity is no longer found to be 
significant or there are no additional grouping variables available. But no statistical 
test for within-group heterogeneity is available for non-parametric meta-analysis 
(Gurevitch and Hedges 1999). We instead relied on an information-theoretic ap-
proach (Burnham and Anderson 2002) to determine whether additional segrega-
tion within groups was warranted given the information available. Specifically, 
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additional segregation of studies within groups was added only if it reduced 
model error when adjusted for degrees of freedom as calculated by Akaiki’s 
Information Criterion (AICc) corrected for small samples:

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑛𝑛  ∗ 𝑙𝑙𝑙𝑙
𝑄𝑄

𝑛𝑛
+ 2𝑘𝑘 +

2𝑘𝑘 𝑘𝑘 + 1

𝑛𝑛 − 𝑘𝑘 − 1
 ,   [1]

where n is the number of observations, k is the number of parameters (that is, group 
means) estimated, and Q is the maximum likelihood value for the meta-analytic 
model (also known as the homogeneity statistic), calculated in an unweighted 
meta-analysis as the sum of the squared errors for observed study effects when 
estimated from group means (Rosenberg and others 2000).

Model selection proceeded in a step-wise fashion, initiating with the most infor-
mative fully categorized main effect. The best model was determined at each step 
by comparison of Akaiki weights (w) representing the probability that a given 
model is the most informative of those considered (Burnham and Anderson 2002):

 𝑤𝑤! =
exp − ∆! 2

exp − ∆! 2
!

!!!

 ,   [2]

where Δi and Δr are differences between the AICc value for a given model and 
the minimum AICc value found in the set of models considered at each selec-
tion step, and M is the number of models considered at each selection step. The 
model with the greatest Akaiki weight in each selection step was retained as the 
null model for the next step until all available explanatory variables had been 
considered.

Results _________________________________________

Correlation Among Response Variables
Percent crown volume scorch was the most prevalent response variable reported 
in studies of actual fuel treatment performance when subjected to fire. Within 
studies that reported more than one response measure, strong correlations were 
found among effect sizes calculated from percent crown scorch, scorch height, and 
canopy damage ratings (table 3). All studies that reported responses in terms of 

Table 3—Cross-correlation matrix for effect sizes derived from studies that reported multiple response variables. 
Number of contrasts for each pair of variables is in parentheses, and significant (p<0.05) correlation 
coefficients are emboldened.

Response  % scorch scorch ht char ht ratinga mortality intensity
%scorch 1
scorch ht 0.78 (34) 1
char ht 0.54 (32) 0.45 (30) 1
ratinga 0.78 (33) 0.78 (29) 0.69 (26) 1
mortality 0.56 (7) 0.80 (4) 0.40 (3) na (0) 1
intensity 0.98 (3) na (0) na (0) na (0) 0.99 (3) 1
 aRating of canopy damage based on scorch and/or consumption.
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one of these three variables were equated to a common measure of effect with the 
regression relationships shown in figure 2. However, effect sizes were calculated 
from percent crown volume scorch for most (77%) of the studies included in the 
meta-analysis. Effect sizes were calculated from canopy damage ratings for three 
studies from prescribed burns in northwestern long-needled pine forests and one 
study from a prescribed burn in an eastern long-needled pine forest. Effect sizes 
were calculated from scorch height for the one study of surface fuel rearrange-
ment in a long-needled pine forest, as they were for all studies in woodlands and 
grasslands by conversion of flame length measurements on experimental fires 
to potential scorch heights using relationships developed by Byram (1959) and 
Van Wagner (1973). The influence of these effect size substitutions on the final 
meta-analytic model is subsequently discussed.

Figure 2—Regression relationships to equate effect sizes calculated from (a) scorch height 
and (b) canopy damage ratings to effect sizes calculated from percent canopy scorch. 

Distribution of Fuel Treatment Effect Sizes
Fuel treatment effect sizes varied widely among the studies included in the 
meta-analysis (figure 3), but the overall mean is large (-0.90) and significant 
with a 95% confidence interval that does not include zero (-1.32 to -0.56). Ef-
fect sizes ranged from -6.72 to 2.89 with 14 observations (22.5% of the total) 
demonstrating a negligible treatment effect, defined by convention as an absolute 
effect size less than 0.20 (Cohen 1988). Observations of non-negligible effects 
were mostly in the intended direction (43 of 48 [90%]) and these tended to be 
large (22 of 43 effect sizes <-0.8). Just one observation demonstrated a large 
counter-productive treatment effect, that is, a positive effect size greater than 
0.8, indicating more extreme fire behavior in the treated areas as compared to 
surrounding untreated areas. Paired photographs representing a range of effect 
sizes corresponding to those presented here are shown in figure 4, and additional 
examples from treatments sampled by Omi and Martinson (2002) and Omi and 
others (2006) are available online (http://omiassociates.net/fueltreatment/) along 
with a database selection tool.
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Figure 3—Distribution of fuel treatment effect sizes calculated from the 19 publications included in the meta-analysis, 
distinguished by the characteristics found to be most informative from the model selection process. Legend abbre-
viations are: cone = conifer forest, wood = woodland other than conifer forest, grass = grassland, C = canopy thin, 
HC = heavy thin, LC = light thin, Rx = recent surface fuel reduction, and S = surface fuel treatment other than recent 
reduction. Negative effect sizes indicate lower fire intensity/severity in areas that received fuel treatment. Effect sizes 
are arranged from top to bottom in order of increasing absolute difference from zero, or no effect. Additional details 
and literature citations for the referenced data sources are provided in the appendices.
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Model Selection
The goal of our meta-analysis was to identify the most informative organizing 
characteristics of fuel treatment studies to explain the variability in reported find-
ings. Study characteristics considered were ecosystem and treatment conditions 
defined in terms of: vegetation, geographic region, treatment type, treatment 
age, and treatment intensity.

Vegetation Type

Most studies of fuel treatment effectiveness that met our study selection criteria 
were conducted in conifer forests (85%), with nearly half of those in long-
needle pine systems (table 2). Just five studies were identified from grassland 
ecosystems and only four from woodlands other than conifer forests. Initial 
model selection suggested that the most informative study segregation was by 
these vegetation types (w>0.99, relative to a maximum possible value of 1.0) 
when compared to grouping studies only by geographic region or treatment 
type (table 4, step 1). Three study grouping schemes by vegetation type were 
then considered: separating grasslands from non-grasslands (table 4, step 2.a), 
further separating non-grasslands into conifer forests and other woodlands (table 
4, step 2.b), and further separating long-needled pine from other conifer forests 
(table 4, step 2.c). The model with three vegetation groups (grassland, conifer 
forest, and other woodlands) had the most support in the data (w = 0.54), while 
the model that further distinguished long-needled-pine from other conifer forests 
had the least support (w = 0.17).

Geographic Region

The fuel treatment studies included in our synthesis were concentrated in the 
western United States (79%), with these divided roughly evenly between northwest 
and southwest (distinguished approximately by the 40th parallel). Eight studies 
were identified from east of the Rocky Mountains and five from outside of the 
continental United States (Portugal and Australia). We next assessed whether there 
was support in the data for adding these regional groupings within the selected 
vegetation groupings for grasslands, conifer forests, and other woodlands. We 
first separated studies conducted in the continental United States from those that 
were not (table 4, step 3.a), then separated the western United States from the 
eastern (step 3.b), and finally northwest from southwest (step 3.c). However, the 
data did not support a more refined separation of studies than simply continental 
United States versus non-United States (w = 0.40), and the second best model for 
a regional effect was the null (table 4, step 3.0). Treatments in conifer forests ap-
pear to perform better in the United States (lower 95% confidence interval<mean 
effect size<upper 95% confidence interval = -1.25<-0.85<-0.56) than elsewhere 
(-0.11<-0.06<0.00), while treatments in woodlands performed better outside 
the United States (-1.70<-1.02<-0.34) than within (0.27<1.23<2.89). However, 
any regional influence on treatment effectiveness proved uninformative upon 
inclusion of treatment type and age as explanatory variables (table 4, step 5.c).
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Table 4—Selection of most informative meta-analytic model for fuel treatment effect sizes: variables included (Model), the homo-
geneity statistic (Q), number of estimated parameters (k), Akaiki’s Information Criterion (AICc), and probability (w) of 
each model being the most informative of those considered at each step in the selection process. The model selected 
from each step is emboldened and italicized and was included as the null for the subsequent step.

 Model Q k AICc w

Step 1: Most informative main effect
null 140.07 1 52.60 0.00
Region (R) 133.93 4 56.45 0.00
Treatment (T) 123.79 6 56.40 0.00
Vegetation (V) 100.42 4 38.60 1.00

Step 2: Vegetation categories
a) V(g = grassland) x V(w+c = non-grassland) 106.28 2 37.62 0.28
b) V(g) x V(w = woodland) x V(c = conifer forest) 100.44 3 36.32 0.54
c) V(g) x V(w) x V(cm = mixed conifer) x V(cp = long-needle pine) 100.42 4 38.60 0.17

Step 3: Geographic categories
0) V* = V(g) x V(w) x V(c) x R( null) 100.44 3 36.32 0.33
a) V* x R(US = United States) x R(xUS = non-US) 92.64 5 35.97 0.40
b) V* x R(xUS) x R(USw = west of Rocky Mountains) x R(USe = eastern US) 91.02 6 37.33 0.20
c) V* x R(xUS) x R(USe) x R(USnw = north of 40th parallel) x R(USsw = Southwest) 90.68 7 39.65 0.06

Step 4: Treatment types

0) V* x R* = R(US) x R(xUS) x T(null) 92.64 5 35.97 0.02
a) V* x R* x T(c = canopy thin) x T(no c) 92.24 6 38.16 0.01
b) V* x R* x T(s = surface treatment) x T(no s) 86.56 6 34.90 0.03
c) V* x R* x T(c&s) x T(c or s) 83.93 6 32.30 0.10
d) V* x R* x T(c) x T(s) x T(c&s) 82.58 7 34.59 0.03
e) V* x R* x T(c) x T(s- = reduce) x T(c&s-) x T(so = other surface treatment) 71.33 8 28.31 0.73
f) V* x R* x T(c) x T(s+) x T(s-) x T(c&so) x T(c&s-) 71.77 9 32.35 0.10

Step 5: Treatment age
0) V* x R* x T* = T(c) x T(so) x T(s-) x T(c&s-) x age(null) 71.33 8 28.31 0.07
a) V* x R* x T* x T(10s- = recent surface fuel reduction) 66.92 9 27.18 0.13
b) V* x R* x T* x T(10s-) x T(10c = recent thin) 66.93 9 27.19 0.13
c) V* x T* X T(10s-) 67.88 8 24.34 0.52
d) V* x T* X T(10s-) x T(c&so) 67.69 9 26.90 0.15
e) V* x T* x T(ages- = age of surface reduction) 74.46 9 32.81 0.01

Step 6: Treatment intensity
0) V* x T* = T(c) x T(so) x T(10s-) x T(c&10s-) x Ti = treatment intensity(null) 67.88 8 24.34 0.00
a) V* x T* x Ti(c&10s-) 40.61 9 -3.28 0.00
b) V* x T* x Ti (10s-) x Ti (c&10 s-) 43.30 10 9.11 0.00
c) V* x T* x T(ch=heavy thin&10s-) 40.64 8 -7.47 0.00
d) V* x T* x Ti (ch&10s-) 31.42 9 -20.69 0.11
e) V* x T* x Ti(c) x Ti (ch&10s-) 31.09 10 -4.70 0.00
f) V* x T(10s-) x Ti (ch&10s-) x T(-10s- = treated w/o recent surface reduction) 30.73 8 -24.80 0.89
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Treatment Type

Different treatment types varied in prevalence among vegetation types and geo-
graphic regions (table 2). Reduction of natural fuels (treatment type 2), primarily 
by underburning, was the most common treatment overall (35%), but concen-
trated in long-needle pine forests (55%), while fairly evenly distributed across all 
regions. Canopy thinning without subsequent treatment of activity fuels (type 6) 
was the next most common treatment (27%), but concentrated in mixed conifer 
forests (74%) and roughly evenly divided between the northwest and southwest 
regions of the continental United States. Canopy thinning followed by reduction 
of activity and natural surface fuels (type 1) was somewhat less common overall 
(24%) but more prevalent in the northwest region (60%) and in mixed conifer 
forests (60%). The remaining 14% of the observations included in our analysis 
were scattered scantily among the other treatment types and across vegetation 
and region categories, though it is notable that rearrangement of natural fuels 
(type 4) was concentrated in non-conifer systems east of the Rocky Mountains.

Given the grouping of studies among the three vegetation types in U.S. eco-
systems versus non-U.S. ecosystems, we next explored further distinguishing 
observations of treatment performance by treatment type (table 4, step 4). We 
first considered the simplest models of treatment type by separating studies 
into two groups based on the fuel strata treated (steps 4a-c): (a) canopy (table 
2 treatment types 1, 3, 5, and 6 versus types 2 and 4), (b) surface (types 1, 2, 4, 
and 5 versus types 3 and 6), and (c) canopy plus surface (types 1 and 5 versus 
types 2, 3, 4, and 6). Next, we grouped studies into three treatment categories 
(table 4, step 4.d): canopy plus surface treatment (table 2, types 1 and 5), canopy 
treatment-only (types 3 and 6), and surface treatment-only (types 2 and 4). Fi-
nally, we distinguished between surface treatments that result in fuel reduction 
(types 1 and 2) versus rearrangement (types 4 and 5). The most informative 
model (w = 0.73) included four treatment groups (table 4, step 4.e): canopy thin 
with surface fuel reduction (type 1), surface fuel reduction-only (type 2), canopy 
thin without surface fuel reduction regardless of whether the slash was otherwise 
rearranged (types 3, 5, and 6), and surface rearrangement-only (type 4). There 
are currently not enough studies to support a separation of whole-tree extraction 
from slash rearrangement or simply letting it lay (table 4, step 4.f: w = 0.10). 
The one study of thinning-only in a deciduous forest was grouped with the two 
studies of surface fuel rearrangements in that vegetation type, as the effect sizes 
were similar (0.80 versus 0.00<1.45<2.89).

Treatment Age

The median age of the treatments included in our synthesis was 3 years old 
when tested by fire, with a maximum of 20 years old in conifer forests, 8 years 
old in other woodlands, and 2 years old in grasslands. Treatments involving 
rearrangement of surface fuels were the most recent (median age of less than 
1 year), followed by surface fuel reduction treatments (median age of 2.5 years). 
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Canopy-only treatments were generally oldest when affected by fire with a me-
dian age of 5 years.

We considered several variations of treatment age to further explain remaining 
variability within conifer forests, including surface reduction treatments catego-
rized as recent (less than 10 years) or old (table 4, step 5.a), both surface reduction 
treatments and canopy treatments categorized as recent or old (table 4, step 5.b), 
and age of surface reduction as a continuous predictor of treatment effect size 
(table 4, step 5.e). The separation of old and new at approximately 10 years was 
apparent from visual inspection of the scatter plot of effect size versus treatment 
age (figure 5) and was the break point that minimized model error and AICc.

The most informative treatment age model distinguished recent surface reduction 
treatments in conifer forests from those older than 10 years, with older surface 
reduction treatments then grouped with surface rearrangement treatments (table 
4, step 5.a). The model was further improved by removing the regional distinction 
between U.S. and non-U.S. studies (table 4, step 5.c: w = 0.52). Distinguishing 
slash treatments by any method other than recent reduction remained unsupported 
given the available data (table 4, step 5.d), thus treatment types 3, 5, and 6 from 
table 2 were grouped together along with those treatments of type 1 that were 
more than 10 years old. Treatment age was not explored as a predictor of effect 
size in grasslands and woodlands due to the paucity of available studies within 

Figure 5—Fuel treatment effect size versus treatment age distinguished 
by treatment type among studies conducted in coniferous forests.
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treatment categories and the limited range of treatment ages that have been 
investigated in these vegetation types. Mean effect sizes with 95% confidence 
intervals for the three vegetation groups and separated by the selected treatment 
type and age categories are displayed in figure 6 for coniferous forests and in 
figure 7 for grasslands and woodlands.

Figure 6—Fuel treatment effect sizes (mean and 95% confidence 
interval) among studies conducted in coniferous forests and 
grouped by (1) thinning followed by recent (<10 years prior to wild-
fire) surface fuel reduction, (2) recent surface fuel reduction with 
no canopy treatment,( 3) surface fuel treatment excluding recent 
reduction, and (4) thinning without recent surface fuel reduction.

Figure 7—Fuel treatment effect sizes (mean and 95% confidence 
interval) among studies conducted in ecosystems other than 
coniferous forests and grouped by (1) surface fuel reduction in 
grasslands, (2) surface fuel rearrangement in grasslands, (3) surface 
fuel reduction in woodlands, and (4) surface fuel rearrangement in 
woodlands (including thin-only).
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Treatment Intensity

Finally, we investigated whether our meta-analytic model would be improved 
by including a measure of treatment intensity. We considered four measures of 
treatment intensity for studies conducted in conifer forests: treatment effect size 
(log response ratio) on residual tree diameter, effect size on height to canopy, 
effect size on canopy bulk density, and a composite measure of treatment inten-
sity calculated as the average of treatment effect sizes on all of the above (with 
the effect on canopy bulk density inverted). As a point of reference, untreated 
stands had an average tree diameter of 25.3 cm, an average height to canopy 
of 4.7 m, and an average canopy bulk density of 0.11 kg/m3. Though treatment 
effects on surface fuels likely would be an informative measure of treatment 
intensity as well, pre-wildfire loadings generally cannot be reconstructed in 
retrospective studies (Martinson and Omi 2008) and were not reported with 
enough consistency to include in our synthesis (n<5 for all treatment categories).

Recent surface reduction treatments preceded by canopy thinning produced the 
greatest change in all measures of treatment intensity (MES = 0.51, 0.73, and 
-0.93 for residual tree diameter, height to canopy, and canopy bulk density, re-
spectively, with all 95% confidence intervals excluding zero). The best predictor 
of this treatment type’s effect on crown scorch metrics of wildfire severity was the 
composite that combined all three measures (r2 = 0.62, versus 0.43 for residual 
diameter, 0.36 for canopy bulk density, and 0.26 for height to canopy). Thinning 
followed by surface fuel reduction on average increased mean tree diameter by 
16.8 cm (range in percent change = -11% to 228%), raised height to canopy by 
5.0 m (range in percent change = 0% to 267%), and reduced canopy bulk density 
by 0.07 kg/m3 (range in percent change = -78% to 6%).

Recent surface reduction without canopy treatment was found to increase both 
residual tree diameters (mean effect size [MES] = 0.22) and height to live canopy 
(MES = 0.42) by significant amounts (95% confidence interval does not include 
zero), though the differences in tree diameters had the strongest relationship to 
differences in wildfire severity for this treatment type (r2 = 0.28 versus r2<0.04 
for all other measures of treatment intensity). Recent surface reduction treat-
ments on average effectively increased mean tree diameter by 6.2 cm (range in 
percent change = -15% to 95%) and height to canopy by 2.5 m (range in percent 
change = -11% to 828%).

Canopy treatments not followed by recent surface reduction significantly increased 
residual tree diameters (MES = 0.22) and decreased canopy bulk density (MES 
= -0.74), but no measure of treatment intensity demonstrated a relationship to 
wildfire severity for this treatment type (all r2<0.06 with canopy bulk density 
marginally strongest). These treatments on average increased mean tree diameter 
by 6.2 cm (range in percent change = -11% to 112%) and reduced canopy bulk 
density by 0.06 kg/m3 (range in percent change = -93% to 70%).
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Surface treatments other than recent fuel reduction and not preceded by canopy 
thinning had no significant effect on any measure of treatment intensity, and 
these were not assessed for a relationship to wildfire severity due to the small 
number of available studies in this treatment category (n = 3 that included treat-
ment intensity data).

The best measure of treatment intensity for each treatment type was then con-
sidered for inclusion in the overall meta-analytic model (table 4, steps 6.a-b, e). 
Visual inspection of the scatter plots of treatment intensity effect sizes versus fire 
severity effect sizes also suggested a threshold effect for the thinning followed 
by surface reduction treatment type, such that studies with a composite intensity 
value less than 0.80 (a change to a less hazardous condition of approximately 
125%, as measured by the combination of tree diameter, height to canopy, and 
canopy bulk density) appear to perform more like surface reduction-only treat-
ments (figure 8).

Figure 8—Scatter plots for studies conducted in coniferous forests that included recent surface reduction 
treatments showing fuel treatment effect sizes on fire severity versus two measures of treatment intensity; 
(a) effect size on residual tree diameter and (b) a composite of effect sizes on residual tree diameter (DBH), 
height to canopy (CBH), and inverted canopy bulk density (-CBD). Surface reduction treatments are distin-
guished by whether they were preceded by “heavy” thinning (composite measure of intensity≥0.8), “light” 
thinning (composite intensity<0.8), or no thinning.
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The most informative treatment intensity models distinguished “heavy” thinning 
from “light” thinning (table 4, step 6.c), grouped light thinning with no thinning 
when followed by recent surface fuel reduction, and included the composite 
indicator of treatment intensity as a continuous predictor of the effectiveness of 
heavy thinning treatments that were followed by recent surface fuel reduction 
(table 4, step 6.d). The final model selected (table 4, step 6.f: w = 0.89) also 
grouped thinning treatments not followed by recent surface fuel reduction with 
surface treatments in conifer forests other than those involving recent reduction 
(that is, rearrangement or reduction treatments more than 10 years old). While 
there appears to be some relationship between the effect of recent surface reduction 
on residual tree diameter and subsequent fire severity (figure 8.a), it is not strong 
enough to support inclusion in the overall model (table 4, step 6.b: w = 0.00).

Final Model Parameterization
The last model displayed at the bottom of table 4 was the final model selected 
for our meta-analysis of the literature on fuel treatment effectiveness; it is highly 
significant (p < 0.001) and explains 78% of the variability in reported findings 
(figure 9). The parameterized final model may be expressed as:

 

 

ŷ = ‐0.36 ‐ 0.32T(10s‐) + 6.11T(ch+10s‐) ‐ 9.43T(ch+10s‐) * Ti   

      + 1.59V(w) – 1.93V(w) * T(10s‐) – 2.07V(g) – 2.24V(g) * T(10s‐), 

 [3]

where ŷ is the estimated fire severity effect size expressed as the natural log of 
the ratio of percent crown volume scorch in a treated area to crown scorch in 
an adjacent and topographically similar untreated area; T(10s-) is an indicator 
variable equal to 1 for surface fuel reduction treatments completed less than 10 
years prior to a wildfire; T(ch+10s-) is an indicator variable equal to 1 for surface 
fuel reduction treatments completed less than 10 years prior to a wildfire and 
preceded by heavy thinning such that Ti is at least 0.8; Ti is a measure of thin-
ning intensity calculated as the average of the treatment effect sizes on mean 
residual tree diameter, height to canopy, and canopy bulk density with the latter 
multiplied by -1; V(w) is an indicator variable equal to 1 for woodlands other 
than conifer forests; and V(g) is an indicator variable equal to 1 for grasslands. 
The intercept value of -0.36 thus represents the expected effect size when all 
indicator variables are equal to zero, that is, any treatment in a conifer forest that 
does not include recent surface fuel reduction.

Effect size estimates for fire behavior observations in woodlands and grasslands 
are scaled for comparison purposes to the effect size estimates calculated from 
fire severity measurements in coniferous forests. Observed effect sizes from 
flame length measurements would be approximately half as large as estimates 
predicted by the meta-analytic model within the detectable range of crown volume 
scorch measurements. Had we restricted the meta-analysis to only those studies 
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that reported responses in terms of crown volume scorch, then woodlands and 
grasslands would be excluded from the model, the mean effect size estimate for 
recent surface fuel reduction treatments in conifer forests would be 15% larger 
with its 95% confidence interval 23% wider, and the estimate for any treatment 
in a coniferous forest that does not include recent surface fuel reduction would 
be 7% smaller with its 95% confidence interval 5% wider.

Diagnostics for Bias
An unweighted meta-analysis such as that presented here may be unduly in-
fluenced by large and inaccurate effect sizes produced by small studies. Any 
research synthesis is also vulnerable to publication bias—a tendency for statis-
tically non-significant results or unexpected findings from small studies to be 
omitted from the published literature. The funnel plot for all studies included in 
our meta-analysis (figure 10a) suggests possible bias from small studies; small 
study effect sizes are larger and more variable about the overall mean than are 
effect sizes from larger studies. The plot is also asymmetrical with an apparent 
omission of small studies that demonstrate counter-productive treatment effects.

Figure 9—Predicted versus observed fuel treatment effect sizes on fire severity (negative 
values indicate lower severity in a treated area). Legend abbreviations are: cone = conifer 
forest, wood = woodland other than conifer forest, grass = grassland, C = canopy thin, HC = 
heavy thin, LC = light thin, Rx = recent surface fuel reduction, and S = surface fuel treatment 
other than recent reduction.



20 USDA Forest Service Res. Pap. RMRS-RP-103WWW. 2013

However, funnel plots may be misleading when there is real heterogeneity 
among study categories (Lau and others 2006). Evidence of small study bias 
largely disappears when studies are segregated by the categories selected in our 
final meta-analytic model (figures 10.b-d). Significant small study bias would 
be indicated by a strong correlation either between study size and effect size 
or between study size and deviation from the group mean, but such correlation 
coefficients were found to be weak (r<0.33) and not significantly different from 
zero (p>0.15) for all study groups. We therefore conclude that our meta-analysis 
was not compromised by potential small study biases.

Figure 10—Funnel plots of study size versus effect size: (a) across all studies, (b) among studies in conifer-
ous forests that included recent surface fuel reduction not preceded by heavy thinning, (c) among studies in 
coniferous forests treated by any means that did not include recent surface fuel reduction, and (d) among the 
less well-studied groups not included in (b) or (c). The asymmetrical form of (a) is suggestive of publication 
bias in the fuel treatment literature, but also appears to be explained by the study grouping selected for the final 
meta-analytical model. Legend abbreviations are: cone = conifer forest, wood = woodland other than conifer 
forest, grass = grassland, C = canopy thin, HC = heavy thin, LC = light thin, Rx = recent surface fuel reduction, 
and S = surface fuel treatment other than recent reduction.



21USDA Forest Service Res. Pap. RMRS-RP-103WWW. 2013

Discussion ______________________________________
Previous reviews of the literature on fuel treatment effectiveness have noted 
above all a paucity of empirical data and heavy reliance on anecdote, theory, and 
modeling (Carey and Schumann 2003, Martinson and Omi 2003, Graham and 
others 2004, Peterson and others 2005). Martinson and Omi (2003) abandoned an 
initial attempt to conduct a meta-analysis on this topic due to the lack of compa-
rable quantitative information. But the literature on fuel treatment effectiveness 
has expanded considerably in the last few years and the number of publications 
(19) we were able to include in this meta-analysis is comparable to others that 
have recently been conducted on fuel treatment topics (22 in Kalies and others’ 
[2010] meta-analysis of wildlife responses, 12 in Boerner and others’ [2009] 
meta-analysis of effects on soil properties, 8 in Kopper and others’ [2009] meta-
analysis of effects on fuel loads, and 7 in Youngblood’s [2010] meta-analysis of 
effects on diameter distributions). Our synthesis of fuel treatment effectiveness 
studies highlights several considerations that both support and inform the current 
fuels management paradigm.

We found that the overall mean effect of fuel treatments on fire responses is large 
and significant, equating to a reduction in canopy volume scorch from 100% in 
an untreated stand to 40% in a treated stand, a reduction in scorch height from 
30.5 m to 16.1 m, or an inferred reduction in flame length from 3.4 m to 2.1 m. 
But our synthesis demonstrates that fuel treatments vary widely in effectiveness, 
which is largely explained by vegetation and treatment type.

Treatments have proved most effective in grasslands and in conifer forests that 
were heavily thinned and subsequently burned, while the least effective treat-
ments have been mechanical rearrangements in woodlands. The extreme case 
of treatment effectiveness observed a reduction in crown volume scorch from 
83% in untreated mixed conifer forest to less than 1% in an adjacent stand that 
was thinned and burned one year previously (an effect size 7.5 times larger 
than the overall mean). The extreme case of treatment ineffectiveness reported 
an increase in flame length from 25 cm in untreated oak woodland to 74 cm in 
adjacent fuels treated by mechanical mastication (an effect size 3.2 times greater 
than the mean and in the opposite direction).

The relative effectiveness of treatments in grasslands, conifer forests, and 
woodlands is as would be expected from the hypothesis that treatments will be 
most effective where available fuel accumulates most rapidly and where fire 
was historically most frequent, based on coarse fire regime constructs (such as 
Schmidt and others 2002). However, we were surprised to find no differences in 
fuel treatment effectiveness between long-needle pine and mixed conifer forests 
or between the northern and southern latitudes of the western United States. This 
suggests that fuel treatment effectiveness may be less sensitive to climatic gradi-
ents in western forests than has been proposed in previous reviews (Schoennagel 
and others 2004), though it should be noted that none of the studies included in 
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our synthesis extended into the upper elevations or latitudes dominated by short-
needle conifers where fire was historically least frequent. One anecdote from 
such systems indicates that thinning may exacerbate fire behavior (Alexander 
and Lanoville 2004), but data have not been presented that could be included in 
our synthesis. 

That no relationship (r2<0.06) was found between canopy fuel variables and the 
effectiveness of either surface reduction treatments without thinning or thinning 
treatments without subsequent slash treatment supports the assertion that surface 
fuel reduction is of primary importance in influencing treatment effectiveness. 
Much of the variability within these treatment types would likely be explained 
by the amount of change in surface fuels that was actually produced, but surface 
fuels information was not reported with enough consistency to include in our 
synthesis.

However, it is notable that more often than not, thin-only treatments have been 
found to moderate fire responses in spite of the addition of slash fuels to the 
surface, though to a lesser degree than surface reduction treatments with or 
without prior thinning. Just 5 of the 18 studies of untreated slash (including the 
one where slash was left in piles) reported a counter-productive treatment effect, 
as compared to 1 of 3 studies of masticated fuels, 1 of 3 studies of underburns 
more than 10 years old, and 1 of 17 studies of more recent surface fuel reduction 
treatments (figure 3). The effectiveness of thin-only treatments likely depends 
on whether fire enters the treated stand as an active crown fire or as a surface 
fire, as the additional surface fuels increase the likelihood of torching, but the 
more open canopy reduces the likelihood of sustained crown fire (Scott and 
Reinhardt 2001).

The best available predictor of the effectiveness of surface reduction treatments 
was residual tree diameter. This variable was also included along with canopy 
variables as a predictor of the effectiveness of treatments that combined thinning 
and burning. Thus, Agee and Skinner’s (2005) recommendation to favor retain-
ing large trees over small ones in order to improve the fire resistance of treated 
stands is supported. Thinning followed by surface fuel reduction was found to 
be the most effective type of treatment, as expected, but the added benefit of 
thinning appears to depend upon achieving a substantial change to canopy fuel 
conditions. A threshold was identified for the effectiveness of these combination 
treatments; those that achieved at least a 100% change to a less hazardous stand 
condition increased in effectiveness as fuel hazard decreased (as measured by 
the average change to mean tree diameter, height to canopy, and canopy bulk 
density). Lighter thinning treatments that reduced canopy fuel hazard by less than 
125% appear to perform no differently than surface fuel reduction treatments that 
did not include any mechanical thinning (figure 8). Based on average conditions 
in the represented untreated stands, the necessary thinning intensity to achieve 
any benefit beyond what would be produced by the surface treatment alone cor-
responds to an increase in mean tree diameter from 19 cm to 42 cm, an increase 
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in height to canopy from 4 m to 9 m, and a decrease in canopy bulk density from 
0.09 kg/m3 to 0.04 kg/m3. We hasten to caution against any inference of thinning 
effectiveness beyond the data included in our meta-analysis and note that further 
reductions in canopy fuel hazard beyond 150% would be of marginal practical 
value even when followed by treatment of the slash, corresponding to a reduction 
in expected crown volume scorch in the treated area from 5% to something less. 
Also, no relationship was found between thinning intensity and subsequent fire 
response among the thin-only treatments, suggesting that any benefit from the 
reduction in canopy fuels is largely offset by the increase in surface fuels until 
they are reduced as well.

Management Implications
The results of this meta-analysis add empirical support for the basic principles 
of fuels management proposed by Agee and Skinner (2005) that emphasize the 
reduction of surface fuels and the preservation of the largest trees in a stand, 
while recognizing the importance of opening the canopy in order to achieve the 
maximum benefits of hazard reduction. This meta-analysis also confirms that 
all treatments may not be beneficial in all locations and provides a quantifiable 
estimate of the expected relative effectiveness of different types of treatment in 
broad vegetation categories. However, caution is warranted in extrapolating the 
results to ecosystems other than long-needle pine and mixed conifer forests due 
to the lack of empirical information on treatment effectiveness and the potential 
for negative ecological consequences, such as invasion by more flammable non-
native species (Martinson and others 2008).

But treatments that include surface fuel reduction, particularly by prescribed 
burning, are well supported for moderating potential wildfire behavior in both 
long-needle pine and mixed conifer forests. These treatments appear to remain 
effective for up to 10 years, though longevity should be expected to vary by 
ecosystem productivity. Where crown fire hazard has become so high as to pre-
clude initial entry with prescribed fire, mechanical thinning may be a necessary 
precursor. Thinning treatments have demonstrated the greatest reductions in 
wildfire severity, but only by those treatments that produce substantial changes 
to canopy fuels, shift the diameter distribution towards larger trees, and are fol-
lowed by broadcast burning or other means of removal. Until the residual activity 
fuels are disposed, they will largely offset much of the hazard reduction benefit 
achieved from opening the canopy. While follow-up slash treatment may be 
generally intended, untreated slash seems to be encountered by large wildfires 
with surprising frequency (table 2, treatment type 6).

Modifications in fire behavior achieved within a single treated stand, however 
significant, are unlikely to change the total area burned by a large wildfire, aid 
fire control efforts, or impact the distribution of severities across a landscape 
(Finney and others 2003). Fuel treatment effectiveness ultimately depends on 
the cumulative impact of a treatment regime applied across landscapes and 
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maintained through time. Optimization and assessment of treatment regimes 
rely on models that presume treatments will perform as expected (Finney and 
others 2007). Empirical fuel treatment performance studies, such as those in-
cluded in this meta-analysis, help define the conditions under which theoretical 
expectations are met. Records of treatment boundaries, prescriptions, and fuel 
conditions are therefore critical components of fuel treatment implementation 
to enable effective adaptive management.

Recommendations for Future Research
Wildfires provide the best test of treatment performance under extreme conditions, 
but information from retrospective studies is limited to that provided by chance 
encounters. Such encounters are most likely where treatments and wildfires are 
most common, thus information is unevenly distributed among ecosystems, 
geographic locations, treatment types, and treatment ages (table 2; figure 10). 
Our search for studies to include in this synthesis highlights the need for greater 
attention to identifying treatments encountered by wildfires in all areas other than 
long-needle pine and mixed conifer forests west of the Rocky Mountains. Also, 
alternatives to prescribed fire for treating surface fuels have so far received little 
evaluation in any ecosystem from a fuel hazard perspective. Few of the studies 
included in our synthesis documented more than a single treatment entry other 
than follow-up slash treatments, and the relative effectiveness of initial entry 
treatments versus treatments that have been maintained at varying frequencies is 
in need of investigation as opportunities arise. The influence of treatment scale 
on modifying fire behavior both within treatments and beyond them is another 
consideration that has received little empirical evaluation.

Retrospective wildfire investigations are also limited by their maximum detect-
able response, which decreases with the height of the dominant vegetation, as 
well as their capacity to connect treatment effectiveness to the altered condition 
of any fuels the wildfire consumes. Despite the large overall mean and wide 
variability in fuel treatment effect sizes demonstrated by our meta-analysis, these 
were likely small relative to what might have been produced had the recording 
vegetation been taller or had fire behavior been measured directly. The addition 
of percent crown volume consumed to percent scorch estimates may provide a 
closer approximation to the effect of fuel treatments on modifying fire behavior, 
but has so far not been reported in the literature with enough frequency to include 
in our meta-analysis (Appendix A).

We suspect that fuel treatment effectiveness also depends on fire weather con-
ditions, such that potential effect size is maximized somewhere between the 
extremes of low and high fire danger. Under very moderate conditions, fire 
behavior may be so benign regardless of fuelbed characteristics that there will 
be little detectable difference between treated and untreated areas. For example, 
negligible responses to treatments that included recent fuel reduction in our own 
investigations (Omi and Martinson 2002, Omi and others 2006) occurred on days 
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when the Burning Index of the National Fire Danger Rating System was below 
the 80th percentile. At the other extreme, fire weather may overwhelm the influ-
ence of fuel manipulations, especially those applied at small scales (for example, 
Finney and others 2003). However, observations of fuel treatment performance 
have not been connected to fire weather conditions with enough consistency in 
the extant literature to be considered quantitatively in our meta-analysis. Future 
studies should fully report all available metrics of fire weather and fuel condi-
tions, as well as treatment responses.

The focus of the literature included in this meta-analysis has been on indicators 
of fire behavior at the flaming front. But fuel treatment effectiveness also ulti-
mately depends on long-term effects determined by the total heat release that is 
augmented by post-frontal combustion, including smoldering of large or deeply 
buried fuels (Neary and others 1999). Indicators of total heat release have been 
long proposed (Wells and others 1979) with some standardization attempted 
(Ryan and Noste 1985, Key and Benson 2006), but the ground component of 
fire severity measurement remains subjective, qualitative, and poorly connected 
to fire behavior, and thus needs further research attention.

An ideal evaluation of fuel treatment effectiveness would include measurement 
of all fuelbed components that contribute to flammability, would compare po-
tential fire behavior in treated and untreated fuelbeds with predictive models, 
and would compare model predictions to observations from experimental fires 
or serendipitous wildfire events, with connection to post-fire evaluation of fire 
severity and repeated measurements of vegetation response over time. Direct 
measurement of fire behavior is the only comparable means to evaluate fuel treat-
ment performance in non-forest ecosystems and is a worthy research endeavor 
in all, despite a high potential for failure to fully meet experimental objectives 
(Fites and Henson 2004).
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Appendix B—Summary of the datasets from the 19 publications included in the 
meta-analysis.

 Treatment Response Effect
 Source Location Vegetation typea age variableb Uc Td sizee

Moore NJ Forest/conifer/
and others 1955      pine 2 2 5 2.6 2.2 -0.3
Omi CA Forest/conifer/
and others 2002      mixed 2 2 4 71.4 16.9 -1.4
 CO Forest/conifer/
      mixed 2 3 4 57.7 50.1 -0.1
 CO Forest/conifer/
      mixed 6 8 4 88.4 72.3 -0.2
 NM Forest/conifer/
      pine 1 5 4 89.8 53.8 -0.5
 NM Forest/conifer/
      pine 6 2 4 99.6 75.7 -0.3
Pollet
and others 2002 WA Forest/conifer/
      pine 1 11 4 100.0 74.0 -0.3
 AZ Forest/conifer/
      pine 2 1 4 99.0 29.0 -1.2
 MT Forest/conifer/
      pine 2 5 4 67.0 26.0 -0.9
 CA Forest/conifer/
      pine 3 4 4 78.0 26.0 -1.1
Fernandes
and others 2004 Portugal Forest/conifer/
      pine 2 2 4 100.0 88.0 -0.1
 Portugal Forest/conifer/
      pine 2 3 4 100.0 94.0 -0.1
 Portugal Forest/conifer/
      pine 2 13 4 100.0 100.0 0.0
Kolaks
2004 MO Forest/mixed/
      oak-pine 6 0 6 (1) 12.9 22.7 0.8
Richburg
and others 2004 MA Grassland 2 2 6 (1) 64.0 0.0 -6.1
 MA Grassland 4 0 6 (1) 64.0 4.8 -3.7
 MA Grassland 4 0 6 (1) 64.0 27.3 -1.2
 MA Forest/deciduous 4 0 6 (1) 1.0 1.0 0.0
Raymond
and others 2005 OR Forest/conifer/
      mixed 1 1 4  83.0 0.1 -6.7
 OR Forest/conifer/
      mixed 6 6 4  71.0 97.3 0.3
Bradley
and others 2006 CA Woodland/mixed/
      oak-pine 4 0 6 (1) 0.3 2.7 2.9

(continued)
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Cram
and others 2006 AZ Forest/conifer/
      pine 1 3 4  100.0 45.9 -0.8
 AZ Forest/conifer/
      pine 6 3 4  100.0 90.8 -0.1
 NM Forest/conifer/
     mixed 1 7 4  97.2 15.9 -1.8
 NM Forest/conifer/
      mixed 1 8 4  100.0 3.7 -3.3
 NM Forest/conifer/
      mixed 6 10 4  99.2 71.5 -0.3
 NM Forest/conifer/
      mixed 6 10 4  94.8 53.6 -0.6
 NM Forest/conifer/
      mixed 6 14 4  100.0 59.4 -0.5
Glitzenstein
and others 2006 SC Forest/conifer/
      pine 4 0 6 2.5 1.3 -0.9
Omi
and others 2006 AZ Forest/conifer/
      pine 2 2 4  70.7 42.2 -0.5
 AZ Forest/conifer/
      pine 2 7 4  52.8 21.0 -0.9
 AZ Forest/conifer/
      mixed 6 2 4  75.0 59.7 -0.2
 AZ Forest/conifer/
      mixed 6 7 4  61.3 77.2 0.2
 CA Forest/conifer/
      mixed 2 9 4  82.5 25.9 -1.2
 CA Forest/conifer/
      mixed 2 20 4  77.7 96.7 0.2
 CA Forest/conifer/
      mixed 6 1 4  56.2 5.9 -2.3
 CA Forest/conifer/
      mixed 6 5 4  88.1 49.0 -0.6
 CO Forest/conifer/
      mixed 1 1 4  100.0 47.9 -0.7
 CO Forest/conifer/
      mixed 1 10 4  75.6 79.4 0.0
 CO Forest/conifer/
      mixed 2 1 4  81.0 20.1 -1.4
 CO Forest/conifer/
      mixed 2 10 4  100.0 100.0 0.0
 CO Forest/conifer/
      mixed 6 2 4  85.2 96.5 0.1
 OR Forest/conifer/
      mixed 1 2 4  100.0 76.2 -0.3
 OR Forest/conifer/
      mixed 6 0 4  99.7 97.7 0.0
 OR Forest/conifer/
      mixed 6 2 4  88.9 84.1 -0.1
 WA Forest/conifer/
      pine 1 2 4  55.5 44.4 -0.2

Appendix B—(Continued).

 Treatment Response Effect
 Source Location Vegetation typea age variableb Uc Td sizee

(continued)
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Jain
and others 2007 MT Forest/conifer/
      pine 2 0 5 3.1 3.2 0.0
 MT Forest/conifer/
      pine 2 2 5 2.5 2.1 -0.3
 MT Forest/conifer/
      pine 2 5 5 2.9 2.3 -0.4
Ritchie
and others 2007 CA Forest/conifer/
      pine 1 4 4  86.0 1.0 -4.5
 CA Forest/conifer/
      pine 1 5 4 99.3 10.0 -2.3
 CA Forest/conifer/
      pine 6 6 4 66.7 22.0 -1.1
Martinson
and others 2008 MS Forest/conifer/
      pine 2 1 4 99.0 14.0 -2.0
McCaw
and others 2008 Australia Forest/deciduous/
      eucalypt 2 4 6 (1) 31.3 9.3 -1.7
 Australia Forest/deciduous/
      eucalypt 2 8 6 (1) 31.3 24.6 -0.3
Safford
2008 CA Forest/conifer/
      mixed 3 12 4 93.8 52.5 -0.6
Diamond
and others 2009 NV Grassland 2 0 6 (1) 11.8 0.7 -3.9
Safford
and others 2009 CA Forest/conifer/
      mixed 1 2 4 94.6 57.0 -0.5
 CA Forest/conifer/
      mixed 5 3 4 99.3 100.0 0.0
 CA Forest/conifer/
      mixed 1 11 4 41.5 16.4 -0.9
Prichard
and others 2010 WA Forest/conifer/
      mixed 1 3 4 70.5 32.9 -0.8
 WA Forest/conifer/
      mixed 6 12 4 70.5 70.5 0.0
 a See table 2 for description of treatment types.
 b See Appendix A for description of response variables. For five publications, scorch height (6) was estimated from reported flame length or 

fireline intensity measurements (1) using relationships developed by Van Wagner (1972) and Byram (1959).
 c Mean response recorded in untreated areas.
 d Mean response recorded in treated areas.
 e Effect size calculated as ln (T/U), multiplied by 1.409 for scorch heights (6) or 1.779 for canopy damage ratings (5) to equate to percent crown 

volume scorch (4)—see figure 2.

Appendix B—(Continued).

 Treatment Response Effect
 Source Location Vegetation typea age variableb Uc Td sizee
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