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Abstract
Characterizing wildfire risk to a fire-adapted ecosystem presents particu-
lar challenges due to its broad spatial extent, inherent complexity, and the 
difficulty in defining wildfire-induced losses and benefits. Our approach cou-
ples stochastic wildfire simulation with a vegetation condition assessment 
framework to estimate the conditional and expected response of vegeta-
tion condition to wildfire. We illustrate application of this framework for the 
Bridger-Teton National Forest (BTNF) in western Wyoming, USA. Results 
illustrate generally positive net effects of wildfire on vegetation condition 
across the major forested biophysical settings on the Forest, supporting the 
notion that wildfire can play a role in restoring or enhancing the ecological 
integrity of landscapes affected by fire exclusion. These results carry sig-
nificant implications for future management of wildfire on the BTNF, and 
highlight temporal relationships between short-term incident response and 
long-term ecological integrity.
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Introduction

An understanding of wildfire risk—the likelihood and magnitude of 
wildfire-induced loss or benefit to highly valued resources and assets 
(HVRAs)—is fundamental to effective wildland fire management. 
Risk-based information supports planning efforts aimed at minimiz-
ing wildfire-related losses and maximizing wildfire-related benefits. 
The primary modeling components of wildfire risk assessment include 
exposure analysis and effects analysis (Thompson and Calkin 2011). 
Assessment of HVRA exposure to wildfire—the likelihood and inten-
sity of wildfire where an HVRA exists—is increasingly used to inform 
fire management planning and fuel treatment prioritization across the 
wildland fire management spectrum, including pre-wildfire planning 
(Scott and others 2012a,b), fuel treatment design (Ager and others 
2010), and wildfire incident response (Calkin and others 2011b). 
Further, assessing the potential effects of fire on HVRAs under varying 
levels of exposure can provide a more comprehensive basis for evalu-
ating the potential consequences of wildfire (Thompson and others 
2013a).

Although the term “risk” is typically associated with the notion of 
loss—indeed, most efforts to estimate wildfire risk limit their focus to 
adverse fire effects—wildfires can also result in substantial ecological 
benefits. A comprehensive assessment of wildfire risk should there-
fore consider the beneficial ecological effects of wildfire (Thompson 
and Calkin 2011; Thompson and others 2013a). This recognition is 
consistent with Federal wildland fire policy that (1) establishes risk 
management as the basis for wildland fire management, and (2) allows 
for flexibility when responding to incidents to account for beneficial 
effects (National Interagency Fire Center 2009). Furthermore, ac-
counting for ecological considerations in wildland fire management 
planning is consistent with the USDA Forest Service 2012 planning 
rule’s emphasis on the restoration and maintenance of resilient ecosys-
tems (Federal Register 77 No. 68) as well as the management policies 
of many national parks and protected areas. Managers of Federal lands 
face the difficult task of protecting resources and assets susceptible to 
wildfire-induced loss while simultaneously allowing fire to play its nat-
ural role in sustaining ecosystems.

Many recent wildfire risk assessment efforts have had direct ties to re-
source objectives and the beneficial role of fire, for instance, evaluating 
dry forest restoration and impacts to fire-dependent wildlife habitat. 
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However, the consideration of broader ecological objectives regarding 
ecosystem condition has been limited. While early national-scale ef-
forts did include fire-adapted ecosystems as an HVRA (Calkin and 
others 2010; Thompson and others 2011a,b), the analyses used only 
coarse scale information on fire regime group and did not integrate 
spatial information related to the extent, complexity, and/or variability 
of ecosystem components. A more refined, and more intensive, ap-
proach could instead consider fire-adapted ecosystems on the basis 
of variables like biophysical setting and the geographic distribution 
of successional states. Our primary objective for this paper is to de-
scribe how we addressed the challenges of assessing risk to fire-adapted 
ecosystems by integrating vegetation condition and wildfire risk assess-
ment frameworks. Further, we illustrate a landscape-scale application 
of this integrated framework to assess the expected effects of wildfire on 
vegetation condition, and discuss how assessment results can inform 
wildland fire management decisions.

The biological elements (e.g., vegetation, wildlife) and ecological pro-
cesses (e.g., nutrient cycling, soil development, hydrologic function) 
of fire-adapted ecosystems have evolved with recurring wildfire, and 
wildfire plays a critical role in their sustainability (Keane and others 
2002). Wildfire is a driving force behind the composition, structure, 
and function of fire-adapted ecosystems (Agee 1998). However, the 
fire regime characteristics—primarily the frequency, severity, and size 
of fires—vary widely among individual ecosystems (Agee 1998; Noss 
and others 2006). Thus, an assessment of the effects of wildfire on fire-
adapted ecosystems begins with classification of individual ecosystem 
types based on the characteristic fire regime of the system. Vegetation 
classifications based on biophysical site characteristics (e.g., soil, cli-
mate, topography) and disturbance regimes are readily available for 
delineating broad ecosystem types across a landscape (e.g., Rollins 
2009).

Spatial and temporal variability in fire regime characteristics also exist 
within individual ecosystem types due to heterogeneity in fuel, tempo-
ral fuel dynamics, weather, topography, and ignitions (Ehle and Baker 
2003; Noss and others 2006; Turner and Romme 1994). For example, 
an ecosystem associated with a “low severity” fire regime may occasion-
ally experience moderate- and high-severity fires in particular locations 
and under particular conditions. This variability leads to a dynamic 
mix of ecosystem states, within any individual ecosystem type, charac-
terized by compositional, structural, and functional components. The 
spatial characterization of fire-adapted ecosystems, therefore, should 
account for the interdependence and dynamic nature of disturbance 
and vegetation on the condition of the system as a whole.
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An assessment of current vegetation condition—current proportional 
distribution of successional states relative to a reference distribution—
serves as a measure of ecosystem resiliency and ecological integrity. The 
USDA Forest Service 2012 planning rule directives define ecological 
integrity as “the quality or condition of an ecosystem when its dominant 
ecological characteristics… occur within the natural range of varia-
tion and can withstand and recover from most perturbations imposed 
by natural environmental dynamics or human influence” (Proposed 
FSH 1909.12 Chapter 10.5). The Interagency Fire Regime Condition 
Class (FRCC) Guidebook standard landscape mapping methodology 
(Barrett and others 2010) provides a foundation for such a vegetation 
condition assessment (VCA). Our primary assumptions in using this 
VCA approach are: (1) vegetation composition and structure are domi-
nant characteristics of fire-adapted ecosystems and serve as indicators 
for other functional characteristics, and (2) historical conditions pro-
vide an acceptable reference for assessing current vegetation condition 
and ecological integrity based on the concept that the conditions with 
which biologic and other ecosystem components have evolved are like-
ly to sustain them in the future (Landres and others 1999; Keane and 
others 2009; Swetnam and others 1999).

Wildfire Simulation

Spatial wildfire simulation is the backbone of quantitative risk assess-
ment (Finney 2005; Miller and Ager 2012; Scott and others 2013b). 
FSim, the large-fire simulator (Finney and others 2011), is a com-
prehensive, stochastic wildfire occurrence, growth, and suppression 
simulation system that pairs a wildfire growth model (Finney 1998, 
2002) and a model of ignition probability with simulated weather 
streams in order to simulate wildfire ignition and growth for tens of 
thousands of fire seasons. The results of these simulations are used to 
estimate, in raster format, the annual burn probability (BP) and con-
ditional flame-length probability (FLPi) across the landscape. FSim BP 
is the annual probability of burning; it is estimated by dividing the 
number of simulated fire seasons that burned each pixel by the total 
number of simulated fire seasons. FLPi is the conditional probability of 
wildfire burning in the ith flame-length category, given that a wildfire 
occurs at all. At a given pixel, FLPi values across the range of flame-
length categories sum to one. FSim results have been used for spatial 
risk analyses in a number of contexts (Calkin and others 2010; Scott 
and others 2012a,b; Thompson and others 2011, 2013a,b).
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Simulation of daily values of Energy Release Component (ERC) of the 
National Fire Danger Rating System is the foundation of FSim’s op-
eration. ERC is calculated from historical weather data (Cohen and 
Deeming 1985). The simulated ERC is used in two ways: first, to de-
termine the probability of a wildfire start for each day, and second, to 
determine which of three fuel moisture scenarios to use for the day. 
The three scenarios correspond to ERC classes with breaks at the 80th, 
90th, and 97th percentile ERC values. ERC is simulated for each day 
of each simulated fire season based on the historical seasonal trend in 
mean and standard deviation of ERC using temporal autocorrelation 
(Finney and others 2011). Wildfire growth occurs only on days for 
which the simulated ERC exceeds the 80th percentile. Simulated wild-
fire growth for each day of each fire is also a function of wind speed 
and direction. Wind characteristics for each day are determined by a 
random draw from the historical monthly joint frequency distribution 
of wind speed and direction. This draw is independent of ERC, and 
each day’s draw is independent of the others.

A wildfire in FSim grows until it is either contained or self-extin-
guishes. FSim includes a suppression module based on a containment 
probability model (Finney and others 2009) that relates the likeli-
hood of wildfire containment on a given day to current and previous 
fire growth. Containment success is simulated stochastically based on 
comparison of a random draw with the modeled containment success 
probability. Self-extinguishment occurs when ERC remains below the 
80th percentile value for several days in a row, if the entire perimeter 
reaches non-burnable land cover, or if the simulation reaches the last 
calendar day of the year.

Vegetation Condition Assessment

The VCA methodology uses biophysical settings (BpSs) as the pri-
mary environmental descriptor (Barrett and others 2010). BpSs 
are mapped using characteristics of the biophysical environment 
and named and described based on approximation of the historical 
disturbance regime, thus providing a suitable characterization of a 
fire-adapted ecosystem. Multiple successional states may compose 
an individual BpS at any one time. The LANDFIRE data (Rollins 
2009) used in this case study apply the classification developed by 
Hann (2003) that is also applied in the FRCC Guidebook (Barrett 
and others 2010). This classification allows up to five natural suc-
cessional states, referred to as S-Classes and labeled A through E, 
to be represented in an individual BpS. Additional S-Classes identify 
current vegetation conditions that are uncharacteristic of the refer-
ence condition. These include native vegetation with composition or 
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structure components outside the range of variation estimated for the 
reference period (uncharacteristic native; UN) and introduced exotic 
vegetation (uncharacteristic exotic; UE). The majority of S-Classes for 
each BpS are mapped based on rules describing specific thresholds for 
lifeform, cover, and height data as documented in BpS model descrip-
tions (LANDFIRE 2007). In some cases, the cover and height rules are 
specific to an existing vegetation type or group of types.

For each BpS, the VCA methodology compares the current amount 
of mapped S-Classes for each BpS within a stratification, such as a 
watershed, to a modeled reference distribution. The reference amount 
represents the mean proportion of each stage’s class as estimated by sim-
ulation of historical disturbance probabilities and vegetative succession 
in the Vegetation Dynamics Development Tool (ESSA Technologies 
Ltd. 2007) over multiple simulations.

A stratification, or assessment unit, must be identified for each BpS 
prior to conducting the VCA. An assessment unit is the contiguous 
land area within which the current distribution of S-Classes is com-
pared to the reference distribution. The appropriate assessment unit 
size for a BpS is related to its dominant disturbance regime (Barrett 
and others 2010). If the assessment unit is too small relative to the his-
torical size of disturbances, a single disturbance event, even one within 
the natural range of variation, could result in one successional stage 
dominating the landscape, indicating departure from the reference 
condition. Conversely, if the assessment unit is too large, then even an 
abnormally large disturbance event may not change the current dis-
tribution of S-Classes, failing to show a departure from the reference 
condition.

For each assessment unit where a BpS occurs, S-Class departure from 
the reference condition is quantified as the S-Class percent difference 
(Barrett and others 2010)

	 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
𝐶𝐶𝐶𝐶 − 𝑅𝑅𝑅𝑅

𝑚𝑚𝑎𝑎𝑎𝑎 𝑅𝑅𝑅𝑅, 𝐶𝐶𝐶𝐶 ∗ 100	
  	 (1)

where CP is the current proportion and RP is the reference proportion 
for the S-Class. Positive values of this measure indicate that the current 
proportion of the S-Class exceeds the reference proportion; negative 
values indicate that the current is less than the reference proportion. If 
the current proportion is twice the reference proportion, the S-Class 
percent difference is +50 percent; if the current proportion is half of 
the reference, then percent difference is -50 percent.
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Risk Assessment Framework

A spatially explicit, quantitative wildfire risk assessment framework 
has been recommended for use to inform a variety of land and fire 
management decisions across a range of planning scales (Calkin and 
others 2011a). The fundamental components of this risk framework 
are wildfire likelihood, intensity, and effects (Finney 2005; Miller and 
Ager 2012; Scott 2006; Scott and others 2013b). The term “effects 
analysis” is often used to describe a comprehensive risk assessment that 
addresses all three fundamental components. The three primary data 
requirements to assess the expected response of HVRAs to wildfire in-
clude: (1) geospatial data of burn probability and wildfire intensity 
generated from a stochastic wildfire simulation, (2) geospatially identi-
fied HVRAs, and (3) response functions that describe the effects of fire 
on each HVRA across a range of fire intensity levels. Typically, the re-
sponse functions describe fire effects as the net change in value (NVC) 
of the HVRA should it experience a fire of a given intensity. A re-
sponse function value of –100 indicates the greatest possible reduction 
of value, or loss, whereas +100 indicates the greatest possible increase 
in value, or benefit. Pairing components 1 and 2 alone provides impor-
tant information regarding where on the landscape HVRAs will likely 
interact with wildfire of different intensity levels (also known as expo-
sure analysis). The addition of component 3 further characterizes the 
effects on HVRAs of this interaction with fire, which can lead to very 
different prioritization strategies than those based on exposure alone 
(Thompson and others 2013a).

The risk framework quantifies risk, for each pixel on a landscape, as 
the expected value of net value change, which is often simply called 
expected net value change, written as E(NVC). This calculation com-
bines an estimate of NVC for a given fire intensity level (NVCi) with 
FLPi. Calculating E(NVC) is a two step process. First, the conditional 
NVC, or C(NVC), is calculated as the sum-product of FLPi and NVCi 
over a range of flame length classes

	 C(𝑁𝑁𝑁𝑁𝑁𝑁) = 𝐹𝐹𝐹𝐹𝐹𝐹! ∗ 𝑁𝑁𝑁𝑁𝑁𝑁! 	
  	 (2)

where C(NVC) is the conditional response of the HVRA to wildfire, 
given that one occurs. The expected value of NVC is

	 E(𝑁𝑁𝑁𝑁𝑁𝑁) = C(𝑁𝑁𝑁𝑁𝑁𝑁) ∗ 𝐵𝐵𝐵𝐵	
  	 (3)



8

Because the term “risk” is often associated solely with adverse wildfire 
effects, we will hereafter use the terms “expected response” and “ex-
pected effects” in place of “risk,” and “effects analysis” in place of “risk 
assessment” when using this framework to quantify wildfire effects on 
vegetation condition. Expected response can be positive or negative.

Where empirical data and integrated modeling tools are lacking, struc-
tured protocols for eliciting and encapsulating expert judgment are 
available to characterize broad scale fire effects to HVRAs. In fact, a 
cornerstone of our overall modeling approach was reliance on local 
knowledge and expertise. We thereby outline a risk-based approach to 
quantitatively assess expected wildfire effects to the ecological integrity 
of fire-adapted ecosystems. Our intent is to demonstrate application of 
a novel approach to quantifying expected fire response in an ecological 
context, considering the amount of S-Classes across a BpS within an 
assessment unit, as a measure of the ecological integrity of fire-adapted 
ecosystems.

Methods

Our overall analytical approach was to first quantify the current 
vegetation condition—the current proportion of area represented 
by individual S-Classes relative to a reference proportion—for each 
biophysical setting, and then to apply a standard quantitative risk as-
sessment framework based upon its results. This approach couples an 
assessment of vegetation condition with a stochastic wildfire simula-
tion and a risk assessment framework to estimate the conditional and 
expected response of vegetation condition to wildfire.

Study Area

The case study we present originated from a broader assessment of 
wildfire risk to HVRAs within Grand Teton National Park and the 
Bridger-Teton National Forest (BTNF) in western Wyoming, USA 
(Scott and others 2013a). In that assessment, each agency first iden-
tified a suite of HVRAs to be analyzed, and then characterized the 
susceptibility and relative importance of those HVRAs according to 
the assessment process outlined by Thompson and others (2013a). In 
this paper, we specifically focus only on the quantification of the effects 
of wildfire on vegetation condition within the BTNF, using VCA as a 
foundation.
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A wide range of biophysical settings and vegetation types occur within 
the 3.5 million acre BTNF (figure 1). The valley-bottoms, at rough-
ly 2,000 m elevation, are covered by grasslands and grass mixed with 
sagebrush (Artemisia tridentata). The highest peaks in the study area 
exceed 3,600 m; the terrain above 3,000 m typically does not support 
wildfire spread due to the prevalence of rock and persistent snow. The 
slopes between the valley-bottoms and the peaks are covered by conif-
erous forests, montane meadows, and stands dominated by quaking 
aspen (Populous tremuloides).

Wildfire Simulation

A prerequisite to spatial wildfire simulation is the development of a fire 
modeling landscape file (LCP)—a suite of geospatial data layers char-
acterizing vegetation, fuel, and topography. The vegetation and fuel 
layers for the LCP were derived from geospatial data describing BpS 
and existing vegetation characteristics. We used LANDFIRE version 
1.0.5 (also referred to as “Refresh 2001”) of these data (Rollins 2009) 
for an extent that includes a minimum buffer of 10 miles around the 
BTNF. This buffer allows for the simulation of wildfire spread onto the 
study area from adjacent land without introducing an artificial edge ef-
fect. To generate the most up-to-date and locally relevant LCP possible 
we consulted with local resource specialists to (1) critique and update 
vegetation characteristics and surface fire behavior fuel model mapping 
rules, and (2) to get updates for recent disturbances not accounted for 
in the LANDFIRE version 1.0.5 data. We acquired geospatial data on 
wildfire severity for the time period of 2000 through 2010 from the 
Teton-Interagency fire ecologist, and geospatial data on overstory can-
opy loss due to insects and disease for the time period of 2000 through 
2008 from the USDA Forest Service Remote Sensing Applications 
Center (Goetz and others 2009). Surface fire behavior fuel mapping 
rules were adjusted based on local resource specialist expertise such that 
simulated fire behavior qualitatively agreed with expected fire behavior.

We used FSim to quantify overall BP and FLP across six fire intensity 
levels (FILs) at each point across the landscape. FSim uses the standard 
classification of FIL developed for the Fire Program Analysis project 
(table 1). Fire intensity in FSim incorporates the effects of relative 
spread direction (heading, flanking, and backing) as well as variability 
in wind speed, wind direction, and fuel moisture. An unpublished re-
port on file at the BTNF (Scott and others 2013a) provides additional 
detail on our wildfire simulation modeling, including our analysis of 
local wildfire and weather history for input into FSim.
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Figure 1. Spatial distribution of the five primary LANDFIRE biophysical settings assessed on the Bridger-Teton 
National Forest and surrounding area. 
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Table 1—Flame length range associated 
with six Fire Intensity Levels (FILs) as 
used in the FSim large-fire simulator.

	 Fire Intensity	 Flame length
	 Level (FIL)	 range (feet)

	 FIL1	 0-2
	 FIL2	 2-4
	 FIL3	 4-6
	 FIL4	 6-8
	 FIL5	 8-12
	 FIL6	 12+

We supplied FSim with weather data for the period of 1990-2010 from 
the Raspberry Remote Automated Weather Station (RAWS), located 
centrally in the landscape. We gathered fire occurrence data (start loca-
tion and date, cause, and final size) for all jurisdictions in the analysis 
area during the period of 1990-2009, and critiqued the data to identify 
and remove duplicate and erroneous values. We used FireFamilyPlus 
software to generate logistic regression coefficients for estimating the 
probability of fire occurrence as a function of ERC. Because multiple 
fires can start on the same day, we also provided a table to FSim in-
dicating the historical distribution of the number of fires per fire-day. 
FSim uses these historical fire occurrence parameters to simulate the 
ignition of wildfires as a function of simulated ERC.

FSim can optionally use information regarding the spatial density of 
ignitions across the landscape. We used an ignition density grid that 
was generated for a companion study on the same landscape (Scott 
and others 2012a) using a statistical modeling approach similar to that 
of Syphard and others (2008). Using FSim, we simulated 20,000 fire-
season iterations at a 90-m raster resolution (2 ac per pixel).

Vegetation Condition Assessment

We used the Interagency Fire Regime Condition Class (FRCC) 
Guidebook standard landscape mapping methodology (Hann and oth-
ers 2008) to determine, for each BpS, the percent difference of each 
S-Class relative to the reference condition (Equation 1). The same 
LANDFIRE version 1.0.5 BpS and existing vegetation data layers used 
for creating the LCP were also used to generate an S-Class data layer. 
There are 29 LANDFIRE BpS classes (Rollins 2009) mapped within 
the BTNF (excluding the bare ground, open water, and perennial ice 
and snow classes). We ultimately identified five BpSs that represent the 
predominant fire-adapted forest ecosystems of the BTNF, accounting 
for 71 percent of the land area (figure 1).
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Resource specialists critiqued the LANDFIRE S-Class mapping rules 
for errors and local applicability. Adjustments were made to fix issues 
with rule overlap and local applicability of uncharacteristic native con-
ditions. The adjusted rules were applied using GIS software. Next, 
resource specialists developed S-Class transition rules in order to up-
date the ca. 2001 geospatial data for wildfire and insect and disease 
disturbance not accounted for in the LANDFIRE version 1.0.5 data as 
discussed above.

Per guidance from the Interagency FRCC Guidebook (Barrett and 
others 2010), we delineated assessment units based on the dominant 
historical fire regime of each BpS. We ultimately delineated two land-
scape levels for the assessment (figure 2). The larger level uses major 
rivers and hydrologic unit boundaries to delineate major mountain 
ranges of the BTNF. This level is applied to the three BpSs associated 
with fire regime groups IV and V (table 2). Sub-basins (that is, 4th level 
hydrologic unit code) within the larger landscapes represent the second 
landscape level, which we applied to the two BpSs associated with fire 
regime group III.

We used version 2.2.0 of the FRCC Mapping Tool to conduct the assess-
ment. The tool calculates the S-Class percent difference (Equation 1) 
for each combination of BpS, S-Class and assessment unit. We then 
classified the S-Class percent difference values into three categories rep-
resenting the status of the S-Class: deficit, similar, or surplus (table 3). 
This metric is especially informative because it indicates whether a par-
ticular S-Class needs to be reduced, maintained, or recruited to move 
a BpS towards the reference condition within a particular assessment 
unit.

Effects Analysis

The effects analysis integrates the VCA and wildfire simulation re-
sults (figure 3). To characterize the effects of wildfire on VCA we held 
a workshop at which resource specialists from the BTNF defined a 
response function for each unique combination of BpS, S-Class and 
status present within the BTNF. Response functions quantify net value 
change, expressed as a relative percentage loss or benefit, as a func-
tion of fire intensity and other landscape characteristics (Thompson 
and others 2011, 2013a). A positive value in a response function in-
dicates a benefit of wildfire at that intensity level; a negative response 
function value indicates a loss, or decrease in value. Response function 
values may range from –100 (greatest possible loss of resource value) to 
+100 (greatest increase in value). In the design and implementation of 
the workshop we adhered to guidance for expert judgment elicitation 
(Kohl and others 2010; Kuhnert and others 2010).
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Figure 2. Assessment unit delineations for the mountain range landscape level (four assessment units; 
used for the two biophysical settings in Fire Regime Group IV and V) and the sub-basin landscape 
level (12 assessment units; used for the four biophysical settings in Fire Regime Group III (table 2)). 
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Table 3—Thresholds used by the FRCC Mapping Tool ver. 
2.2.0 to calculate S-Class status.

	 Absolute difference between current
	 S-Class proportion and reference
S-Class Status	 proportiona

	 Deficit	 -100% and < -33%
	 Similar	 ≥ -33% and ≤ 33%
	 Surplus	 >33% and 100% 

a This assessment was conducted using the Interagency FRCC 
Guidebook version 1.3.0 (Hann and others 2008) methodology 
and version 2.2.0 of the FRCC Mapping Tool. Version 3.0 of the 
Guidebook (Barrett and others 2010) and version 3.1.0 of the 
FRCC Mapping Tool use different thresholds.

Table 2—Landscape level and associated fire regime group for each biophysical setting (BpS) assessed on the Bridger-Teton National 
Forest. Assessment units are delineated in Figure 2. 

Landscape 
level

Number of 
assessment 

units

Fire regime Associated biophysical settings (BpSs)

Group Frequency Severity
Complete name and  

model number Short name

Sub-Basin 12 III
35 – 200 

years
Low – Mixed

Northern Rocky Mountain 
Subalpine Woodland and 
Parkland - 2110460

Subalpine woodland

Middle Rocky Mountain 
Montane Douglas-fir Forest 
and Woodland - 2111660

Douglas-fir

Mountain 
Range

4

IV
35 – 200 

years
Replacement

Rocky Mountain Aspen Forest 
and Woodland - 2010110

Aspen

V 200+ years Replacement - Any

Rocky Mountain Subalpine 
Dry-Mesic Spruce-Fir Forest 
and Woodland - 2110550

Dry spruce-fir

Rocky Mountain Subalpine 
Mesic-Wet Spruce-Fir Forest 
and Woodland - 2110560

Wet spruce-fir
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Figure 3. Calculating conditional and expected response of vegetation condition to wildfire 
is a function of three modeling processes: vegetation condition assessment, exposure and 
effects analysis, and wildfire simulation.
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In developing a response function for a combination of BpS, S-Class 
and status, we asked the resource specialists to consider how a wild-
fire occurring at each of six different fire intensity levels would affect 
the vegetation type, cover, and height, and therefore S-Class. Then we 
asked them to consider how that change in S-Class would affect the 
overall proportion of S-Classes within each BpS. That is, we asked the 
specialists to consider not only direct wildfire impacts to S-Class, but 
also how those impacts would lead to desirable or undesirable shifts 
in S-Class proportion at the stratum level (i.e., BpS). For instance, a 
wildfire-related transition from an S-Class with a surplus of acres to 
an S-Class with a deficit of acres can be considered ecologically ben-
eficial—wildfire is expected to move the proportion of both S-Classes 
towards the reference proportion thus improving the ecological integ-
rity of the stratum as a whole.

For each pixel on the landscape, we used a GIS to first calculate the 
conditional response to wildfire (CR) as

	 𝐶𝐶𝐶𝐶 = 𝐹𝐹𝐹𝐹𝐹𝐹! ∗ 𝑅𝑅𝑅𝑅! 	
  	 (4)

Conditional response is an estimate of the likely response, given that a 
fire occurs. Next, we calculated the expected value of the response to 
wildfire (ER) as

	 𝐸𝐸𝐸𝐸 = 𝐶𝐶𝐶𝐶 ∗ 𝐵𝐵𝐵𝐵	
  	 (5)

Expected response incorporates the likelihood of occurrence. Finally, 
we computed the mean values of BP, CR and ER for the unique combi-
nations of BpS, S-Class and status. By coupling the land area associated 
with each of those combinations with the mean BP, we also estimated 
the expected annual area burned.

Results

Wildfire Simulation

The wildfire simulation resulted in an annual mean of 5.9 fires ex
ceeding 250 ac, with a mean size of 6,108 ac. This corresponds to a 
mean annual area burned of 36,508 ac/yr compared to the historical 
20-year mean of 30,001 ac/yr. More importantly, FSim estimates how 
those acres burned are distributed across the landscape as burn prob-
ability (figure 4). The spatial pattern of BP is a function of ignition 
density and spread rate potential within an area of the landscape. 
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Figure 4. Simulated annual burn probability across the fire modeling landscape. Areas in brown have the highest burn 
probabilities; areas in blue the lowest. 
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The south-central portion of the landscape has both low ignition 
potential and low spread rate potential (fuel is predominantly sparse 
grass), so that portion has some of the lowest burn probabilities. The 
highest BP values occur in the moderate grass and grass-shrub fuelbeds 
(fuel models GR2, GR4 and GS2; Scott and Burgan 2005) because 
these fuel models exhibit relatively high spread rates.

The simulation of fire intensity in FSim inherently incorporates the ef-
fects of relative spread direction (heading, flanking, and backing) and 
variability in wind speed, wind direction, and fuel moisture. These fac-
tors, coupled with a heterogeneous mix of fuel and topography, result 
in a spatially variable distribution of burn probability both within and 
among FILs (figure 5). Conditional probabilities are generally lower 
for greater fire intensities, with very low probabilities for FIL 6 (flame 
length >12 feet). Some of the highest conditional burn probabilities are 
for FIL 2, which corresponds to 2- to 4-foot flame lengths.

Vegetation Condition Assessment

Each of the five BpSs assessed has one or more S-Classes in deficit 
or surplus status, suggesting varying but widespread departure of the 
current vegetation condition from the reference condition (table 4). A 
combination of BpS and S-Class showing more than one status indi-
cates a variation in status among assessment units. Small amounts of 
S-Class U were found in several BpSs, primarily due to the mapping 
of riparian existing vegetation types (EVTs) to the non-riparian BpSs. 
This discrepancy results from differences in the LANDFIRE BpS and 
EVT mapping methodologies. BpS is “coarser” in concept than EVT 
because it is mapped using biophysical gradient modeling, without the 
integration of remotely sensed imagery that is used for mapping EVT 
(Rollins 2009). Therefore, EVT data may reflect subtleties gleaned 
from the remotely sensed vegetation that are missed by the BpS map-
ping process, possibly resulting in an invalid characterization of the 
UN S-Class where EVT and BpS seem to conflict. Because this po-
tential problem does not cover a significant area, we have chosen to 
exclude results for S-Class U from the analysis.

In all four mountain range assessment units, the dry spruce-fir BpS 
(covering 37 percent of the BTNF) showed a deficit of the mid-
development S-Class (B) and a surplus of early-development and 
spruce-fir dominated late-development S-Classes (A and D). The sta-
tus of lodgepole-dominated late-development S-Class C was similar 
to the reference condition (table 4). For the subalpine woodland BpS 
(11 percent), there is a deficit of mid-development/closed-structure 
S-Class B and a surplus of late-development/open-structure S-Class D. 
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Figure 5. Conditional flame-length probability (FLP) by fire intensity level (FIL). These probability values 
are conditional on wildfire occurrence and are thus quantified on the scale of 0-1. For burnable pixels, 
the sum of FLP values across all six FILs is exactly 1. Fire intensity levels are classified by simulated 
flame length. FIL1 = 0-2 ft; FIL2 = 2-4 ft; FIL3 = 4-6 ft; FIL4 = 6-8 ft; FIL5 = 8-12 ft; FIL6 = 12+ ft.
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Table 4. S-Class status results and reference proportion.

Biophysical 
setting

S-Class:  
Development 

stage/structure

Status
Reference 

proportion (%)Deficit Similar Surplus

Dry spruce-
fir

A: Early/All X 5

B: Mid/All X 30

C: Late/Alla X 50

D: Late/Allb X 15

Subalpine 
woodland

A: Early/All X X 25

B: Mid/Closed X 35

C: Mid/Open X X 10

D: Late/Open X 5

E: Late/Closed X X 25

Wet spruce-
fir

A: Early/All X X 10

B: Mid/Closedc X 20

C: Mid/Open X 10

D: Late/Open X 40

E: Late/Closed X 20

Aspen

A: Early/All X X 15

B: Mid/All X 20

C: Late/Closedd X X 25

D: Late/Open X 25

E: Late/Closede X X 15

Douglas-fir 

A: Early/All X X 10

B: Mid/Closed X 10

C: Mid/Open X X 10

D: Late/Open X 50

E: Late/Closed X X 20

a Lodgepole dominant.
b Spruce-fir dominant.
c S-Class B is in such a deficit that it does not exist on the current landscape.
d Aspen dominant.
e Conifers dominant or co-dominant.
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The early-development, mid-development/open structure, and late-
development/closed-structure S-Classes (A, C and E) each fall into 
two status classes due to variation across assessment units. In the wet 
spruce-fir BpS (9 percent), the status of the early-development S-Class 
(A) was split between similar and surplus; the remaining S-Classes were 
either in deficit or surplus status, but not similar. In the aspen BpS (9 
percent), the status of each S-Class is deficit or surplus in at least one 
assessment unit, indicating widespread departure from the reference 
condition. However, the status was similar for at least some assessment 
units for the early development (A), aspen-dominated late-develop-
ment/closed-structure (C), and conifer-dominated late-development/
closed-structure (E) S-Classes. In the Douglas-fir BpS (5 percent), the 
mid-development/closed-structure S-Class (B) is in deficit in all as-
sessment units, but the status of the other S-Classes was similar to the 
reference condition in at least one all assessment units.

Effects Analysis

The response functions produced by the workshop participants indi-
cate a range of both positive and negative effects of fire (table 5). Many 
of the response functions have strong positive values, reaching as high 
as +100 percent where late-development/open-structure in the aspen 
BpS (S-Class D) is in surplus, indicating an expectation for substantial 
ecological benefits due to wildfire. Such benefits were largely assigned 
where a given S-Class is in surplus, in some cases even for very high fire 
intensities, especially if fire is expected to transition the surplus S-Class 
to an S-Class currently in deficit. Benefits are also associated with 
maintenance of an S-Class that is already in similar or deficit status, 
though these benefits were generally not as great. Lastly, the distribu-
tion of fire-related benefits and losses varies according to S-Class status 
and FIL, indicating the added value of assessing vegetation departure 
at the S-Class level, rather than merely indicating whether a given BpS 
is departed.

Differences in mean annual burn probability among BpSs are driven 
by ignition density and spread rate potential within and adjacent to the 
BpS. Wildfire simulation results show a wide range in BpS exposure 
to wildfire, with the aspen and Douglas-fir BpSs roughly three times 
as likely to experience wildfire as the subalpine woodland (figure 6). 
The mean conditional response for all BpS classes is positive, indicat-
ing that, on average, wildfire is expected to have a net beneficial effect 
on vegetation condition, moving the current distribution of succes-
sional stages towards the reference distribution in each of the BpSs 
(figure 6). Mean conditional response integrates information from tabular 
response functions and conditional flame-length probabilities across 
FILs, summarized across all combinations of BpS, S-Class, and status. 
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Table 5. Response functions for each combination of biophysical setting (BpS), S-Class and status present within the Bridger-
Teton National Forest. The response function value indicates the relative percentage change in value after burning at the 
given fire intensity level (FIL) (measured in flame length classes). Highlighted cells indicate a non-negative response to 
wildfire. This table only presents combinations that actually exist on the landscape, and is not an exhaustive listing of 
all possible combinations of BpS, S-Class and status.

Biophysical setting
S-Class:  

Development 
stage/structure

Status FIL1 FIL2 FIL3 FIL4 FIL5 FIL6

Dry spruce-fir

A: Early/All Surplus 40 40 -20 -30 -30 -30

B: Mid/All Deficit 30 15 -10 -50 -70 -80

C: Late/All Similar 30 30 15 0 -60 -70

D: Late/All Surplus 10 20 40 40 20 10

Subalpine woodland

A: Early/All surplus 30 30 -10 -20 -20 -20

A: Early/All similar 30 30 -10 -20 -20 -20

B: Mid/closed Deficit 30 40 0 -70 -80 -80

C: Mid/Open Similar 20 30 0 -60 -70 -70

C: Mid/Open deficit 30 40 0 -70 -80 -80

D: Late/Open Surplus 10 20 40 60 20 0

E: Late/Closed similar 30 20 0 -60 -90 -90

E: Late/Closed deficit 40 30 -10 -70 -100 -100

Wet spruce-fir

A: Early/All Surplus 30 30 -20 -30 -30 -30

A: Early/All similar 30 30 -20 -30 -30 -30

C: Mid/Open deficit 30 40 0 -70 -80 -80

D: Late/Open Surplus 10 20 40 60 20 0

E: Late/Closed deficit 40 30 -10 -70 -100 -100

Aspen

A: Early/All similar 0 0 -10 -30 -50 -70

A: Early/All Deficit 0 0 -20 -40 -60 -80

B: Mid/All deficit -10 -10 -20 -40 -60 -80

C: Late/Closed similar 20 20 0 -20 -40 -60

C: Late/Closed Deficit 10 10 -10 -30 -50 -70

D: Late/Open Surplus 10 20 40 100 100 100

E: Late/Closed similar 10 10 10 10 10 10

E: Late/Closed deficit 0 0 0 0 0 0

Douglas-fir 

A: Early/All Surplus 30 30 -20 -30 -30 -30

A: Early/All similar 30 30 -20 -30 -30 -30

B: Mid/closed Deficit 40 40 20 -50 -50 -50

C: Mid/Open Similar 50 60 60 0 -50 -50

C: Mid/Open Deficit 60 70 70 0 -60 -60

D: Late/Open similar 50 60 60 20 -40 -50

E: Late/Closed surplus 0 20 70 70 -40 -50

E: Late/Closed similar 70 70 70 70 -40 -50
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Figure 6. Mean annual burn probability and mean conditional response to wildfire for 
each of five biophysical settings assessed on the Bridger-Teton National Forest. Light 
gray reference lines indicate equal expected response.

The strongest positive response is in the Douglas-fir BpS. The product 
of annual burn probability and conditional response yields expected 
response. Thus, although they vary in both burn probability and con-
ditional response, the overall expected responses for the dry spruce-fir, 
wet spruce fir, and aspen BpSs are roughly equal (figure 6).

Variation in BP and CR exists among S-Classes of a BpS (figure 7). 
Particularly noteworthy is the range of conditional responses to 
wildfire, especially for the aspen BpS, which shows a slightly negative 
response to wildfire where the early-development S-Class is similar or 
in deficit to the reference proportion and where the mid-development 
S-Class (B) is in deficit. By cross-referencing these results with the re-
sponse functions, the causes of the negative response become apparent—the 
response function indicates strong adverse effects of fire in the middle and 
higher FILs for all three of those combinations of S-Class and status. 
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Figure 7. Mean annual burn probability and mean conditional response to wildfire of succession 
class (S-Class) and status combinations for each of five biophysical settings on the Bridger-Teton 
National Forest. Light gray reference lines indicate equal expected response (see table 6 for 
details).
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The land area of each BpS and S-Class status combination multiplied 
by the mean annual burn probability yields an expectation for annual 
area burned (table 6). The dry spruce-fir BpS has the highest expected 
annual area burned, due in part to its large land area. Expected response 
is presented as a percentage of the maximum expected response occur-
ring in any combination of BpS, S-Class and status. In this analysis, 
the maximum expected response occurs where the mid-development/
open-structure S-Class of the Douglas-fir BpS (C) is in deficit. This 
S-Class also has the second-highest conditional response (behind 
where the late-development/closed-structure S-Class (E) is similar to 
the reference proportion, which exhibits the third-highest expected re-
sponse. In other words, taken as a whole, the Douglas-fir BpS exhibits 
the most beneficial effects of wildfire, both conditional and expected. 
Within the Douglas-fir BpS, all combinations of S-Class and status 
show a positive mean response to wildfire. The greatest conditional 
benefits occur where the late-development/closed-structure S-Class (E) 
is similar to the reference proportion. Interestingly, in assessment units 
where that S-Class is in surplus is among the three S-Classes with the 
least wildfire benefit. The reason for this divergence of conditional re-
sponse within a single S-Class can be seen in the response functions. 
Where this S-Class is similar to the reference condition, the response 
function values are strongly positive for low-intensity fire, indicating 
the benefit of low-intensity fire in maintaining the S-Class through 
under-burning. The response functions reflect that low-intensity fire 
is less beneficial where late-development/closed-structure is in surplus. 
The aspen BpS is the only BpS where an S-Class exhibits a negative 
mean conditional response. The mean conditional response of the early 
and mid-development aspen S-Classes are all slightly negative, regard-
less of status.

Even though most S-Classes exhibit a positive mean condition re-
sponse, individual grid cells within an S-Class can still have a negative 
conditional response (figure 8) if response functions include negative 
values. In the Aspen BpS, for which some S-Classes had a negative 
mean conditional response, 14 percent of land area exhibits a negative 
response. In the Douglas-fir BpS, which had the most positive condi-
tional response, only 2 percent of the BpS had a negative net response, 
owing to negative response function values at higher FILs.
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Table 6. Summary of land area, mean burn probability, expected area burned and mean expected and conditional response to 
wildfire of five BpSs on the Bridger-Teton National Forest. Mean expected response (per pixel) is expressed as a percentage 
of the maximum response. Mean conditional response is expressed on the response-function scale (-100 to +100). A BpS 
and S-Class combination can have more than one status if vegetation condition varies among assessment landscapes.

Mean response per pixel

Bio- 
physical 
setting

S-Class: 
Development 
stage/status Status

Land area 
(ac)

Mean 
annual burn 
probability 
(fraction)

Expected 
annual area 
burned (ac)

Expected 
response 

(percent of 
max)

Conditional 
response

Dry spruce-fir

A: Early/All Surplus 253,779 0.002864 726 26 21.6

B: Mid/All Deficit 18,973 0.002042 40 10 11.8

C: Late/All Similar 497,850 0.002023 1,006 22 23.6

D: Late/All Surplus 492,179 0.002127 1,048 15 17.1

Subalpine 
woodland

A: Early/All Surplus 30,839 0.001684 52 12 16.7

A: Early/All Similar 94,873 0.001259 119 11 21.0

B: Mid/closed Deficit 381 0.001074 0 15 32.2

C: Mid/Open Similar 1,712 0.001384 2 13 22.8

C: Mid/Open Deficit 14,802 0.001124 17 14 30.4

D: Late/Open Surplus 204,215 0.001287 262 9 16.6

E: Late/Closed Similar 3,773 0.001406 5 15 25.3

E: Late/Closed Deficit 35,240 0.001293 44 18 32.5

Wet spruce-fir

A: Early/All Surplus 34,096 0.003630 124 25 16.4

A: Early/All Similar 12,916 0.003837 49 22 13.5

C: Mid/Open Deficit 12,276 0.003121 40 37 28.3

D: Late/Open Surplus 229,435 0.002678 615 24 20.9

E: Late/Closed Deficit 27,636 0.002722 74 21 18.3

Aspen

A: Early/All Similar 37,355 0.005669 213 -15 -6.3

A: Early/All Deficit 2,459 0.003877 10 -13 -8.0

B: Mid/All Deficit 16,109 0.003323 54 -18 -12.8

C: Late/Closed Similar 4,460 0.002487 10 19 18.0

C: Late/Closed Deficit 33,325 0.002838 94 9 7.8

D: Late/Open Surplus 204,922 0.003402 697 32 22.2

E: Late/Closed Similar 20,917 0.003505 74 15 10.0

E: Late/Closed Deficit 5,733 0.003648 20 0 0.0

Douglas-fir

A: Early/All Surplus 11,649 0.003960 47 27 16.1

A: Early/All Similar 11,673 0.004379 52 25 13.7

B: Mid/closed Deficit 15 0.003550 0 51 34.2

C: Mid/Open Similar 2,773 0.002865 7 65 53.9

C: Mid/Open Deficit 6,133 0.003684 22 100 64.4

D: Late/Open Similar 87,663 0.003318 292 77 54.7

E: Late/Closed Surplus 24,777 0.004155 104 26 14.8

E: Late/Closed Similar 28,652 0.002521 72 73 69.2
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Figure 8. Histograms of the conditional response to wildfire of individual succession classes (S-Classes) 
within five biophysical settings (BpSs) on the Bridger-Teton National Forest. Stacked bars reflect that 
different S-Classes can produce the same effect, depending on their response functions and exposure to 
fire intensity. Likewise, a particular combination of BpS and S-Class can be found in multiple conditional 
response bars, indicating variability in fire intensity or S-Class status across the landscape (see table 6 for 
S-Class descriptions within each BpS). 
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In addition to the tabular and graphical summaries reported above, the 
effects analysis produces a map of conditional and expected response of 
vegetation condition to wildfire (figure 9). As also seen in figure 8, very 
little land area resulted in negative conditional or expected response. A 
small amount of the landscape exhibited a neutral response, bracket-
ing zero. The majority of the landscape exhibits varying degrees of net 
benefit. Expected response is the product of condition response and 
BP, so the small differences in the two maps are due to variation in BP 
across the landscape.

Figure 9. Conditional response (left) and expected response (right) of vegetation condition to wildfire. Expected response is the product 
of conditional response and annual burn probability (figure 4). The X-axes of the histograms correspond to the classes indicated in the 
legends. Neutral response is depicted in gray.
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Discussion

Our results illustrate generally positive net effects of wildfire on vegeta-
tion condition across the major forested BpSs on the BTNF, supporting 
the notion that wildfire can play a role in restoring or enhancing the 
ecological integrity of landscapes affected by fire exclusion. Our results 
further support the assertions that incorporating information regard-
ing expected response to wildfire can be much more informative than 
analysis of wildfire characteristics in and of themselves. Partitioning 
response functions according to indicators of vegetation condition, or 
ecological integrity, such as S-Class status, can lead to risk-informed 
restoration decision processes. These results carry significant implica-
tions for future management of wildfire on the Forest, and highlight 
temporal relationships between short-term incident response and long-
term ecological integrity. Granted, our results provide but a snapshot 
of a dynamic system, but the analyses demonstrated here can be peri-
odically performed over time to monitor trends in ecological integrity 
and associated wildfire risks.

At least three opportunities stem directly from this integrated assess-
ment of vegetation condition and wildfire effects. First, restoration 
needs could be prioritized on the basis of S-Class status. That is, areas 
of high vegetation condition departure could be targeted for inten-
tional vegetation manipulation to move towards desired conditions. 
Second, prescribed fire planning could build off analysis of restoration 
needs, targeting specific fire intensities in specific locations to achieve 
restoration objectives. These planning efforts could tie directly to ex-
pert-defined response functions, which neatly encapsulate information 
required regarding desired intensities. Third, land management units 
could seek to refine their land and fire management plans to account 
for the spatial distribution of wildfire effects on vegetation condition 
across the landscape. For instance, in areas of expected net benefit, 
wildfire response objectives could be spatially delineated to promote 
the management of fire for resource benefits (Thompson and others 
2013c). This type of analysis would dovetail nicely with a trend of 
increased use of geospatial information and risk assessment results to 
support wildfire incident response planning.
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Any comprehensive analysis of wildfire risk will need to consider the full 
suite of HVRAs, including socioeconomic HVRAs. Whereas our use 
of the VCA approach and focus on an ecological HVRA allowed ben-
eficial effects of wildfire to be shown, in many contexts and locations it 
will be difficult to promote wildland fire (both planned and unplanned 
ignitions) as a management or restoration tool due to high potential 
for loss. In the broader Teton Interagency Risk Assessment (Scott and 
others 2013a) we found wildfire threats were highest primarily in loca-
tions near highly important and highly susceptible HVRAs, including 
the wildland urban interface, high-value BTNF investments, and criti-
cal wildlife habitat. These threats tended to be spatially concentrated. 
That is, the majority of the risk on a landscape may be housed in a rela-
tively small spatial extent. Explicit evaluation of potential fire-related 
benefits may engender support for additional use of wildland fire as a 
management tool, or enable less aggressive suppression where it does 
not directly threaten resources and assets more susceptible to loss.

Another caveat relates to our use of multiple models to analyze vegeta-
tion departure (VCA), to simulate wildfire (FSim), and to characterize 
fire effects (response functions), and the associated potential for er-
rors and uncertainties. A particular concern relates to the potential for 
under-prediction of crown fire behavior, which could affect estimates 
of flame lengths and patterns of burn probability in forested areas. 
However, the 20-year historical mean annual area burned corresponded 
well with the simulated mean annual area burned, suggesting reason-
able validity of the burn probability results. We’d further note that we 
undertook great effort to work with local experts to calibrate vegeta-
tion and fuel input layers and to examine simulation assumptions and 
results. Reliance on local practitioner and resource specialist judgment 
was a common thread throughout our entire analytical process.

In terms of recommendations for future analyses, a critical component 
is up-front investment to set the stage for success. Both the vegetation 
condition and wildfire effects assessments require intensive geospa-
tial data management and expertise in natural resources management 
and modeling. Appropriate resources and expertise should be identi-
fied early in the process. Following the principles of expert judgment 
elicitation, it is recommended to distribute information to resource 
specialists prior to holding the response function workshops, and to 
invest time in clearly articulating assessment objectives. This early en-
gagement is important not only to familiarize experts with the process 
and to start thinking though potential fire effects, but also to help 
identify additional geospatial information to incorporate into response 
functions for characterizing fire effects. Time is always a constraint in 
such efforts, but where possible, scheduling a pre-workshop to discuss 
and critique conceptual models of post-fire S-Class transitions could 
be helpful for defining response functions.
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FSim was designed to be used by specialized analysts to assess nation-
al fire program management alternatives (Finney and others 2011). 
Although it has subsequently been used a number of times at finer 
scales, FSim remains a system in continued development and is avail-
able to a relatively small set of users. Fortunately, alternatives exist. 
FlamMap5—the most-recent version of the FlamMap software (Finney 
2006)—has the ability to generate the gridded burn probability and 
flame-length probability information needed for this assessment meth-
od. Unlike FSim, the results from FlamMap5 do not correspond to 
a year or fire season. Instead, FlamMap5 results relate to a relatively 
short duration “problem-fire” scenario—a specified wind speed, wind 
direction, fire duration, and set of fuel moisture contents. The primary 
stochastic element of FlamMap5 is ignition location. Depending on 
how the user defines the problem-fire scenario, the relative frequency of 
different flame-length classes could be quite different from FSim. FSim 
simulates fire intensity in all weather scenarios, whereas FlamMap5 
is used to simulate problematic scenarios. Because of this difference, 
FlamMap5 is likely to generate higher conditional flame lengths than 
FSim; that, in turn, affects conditional wildfire response. Nonetheless, 
the use of FlamMap5 could be a useful first step in the assessment of 
the expected effects of wildfire on vegetation condition.

Graphically depicting the results as the combination of BP and con-
ditional net response enables exploration of implications for fire 
management (figure 10). While stylized, this framework provides a 
useful model for thinking through the implications of HVRA exposure 
and effects and how various management strategies may target different 
risk factors. Wildfire risk mitigation activities (fire prevention, pre-
paredness, suppression, hazard reduction and susceptibility reduction) 
are indicated anywhere conditional wildfire response is negative. Areas 
of the landscape where expected response is most negative (high BP 
and strongly negative conditional response) may be explored as higher 
priority treatment areas relative to areas where conditional response is 
less negative and BP is low. Treatments in such areas could be strategi-
cally placed to lower BP values across the landscape and/or to reduce 
localized fire intensities to reduce CR. Where conditional response is 
positive, a variety of wildland fire management practices are available. 
Where both CR and BP are high, managing wildfires (unplanned igni-
tions) may provide the greatest chance of success. Prescribed fire may 
be considered where the conditional effects of wildfire are positive, but 
not likely to occur without management intervention. Prescribed fire 
may also be effective even where CR is negative if there is some inten-
sity level that is achievable with prescribed fire for which the response 
function value is positive.
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Figure 10. Implications of conditional response and burn probability on wildfire risk mitigation priorities 
and wildland fire management. Where conditional response is positive and burn probability (BP) is 
high, management of wildfire for these benefits is a good strategy. Where conditional response is high 
but BP is low, prescribed fire can be used to capture the benefits of wildland fire.
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