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INTRODUCTION
Managing for “ecological resilience” is mandated by 
U.S. policies to guide publicly-owned landscapes into 
a future made uncertain due to the anticipated complex 
and sometimes novel interactions of anthropogenic 
climate change; exotic plant, insect, and pathogen 
invasions; and industrial, agricultural, and urban 
development (Moritz and Agudo 2013; Schoennagel 
et al. 2017). The National Cohesive Wildland Fire 
Management Strategy, for example, specifies creating 
resilient landscapes as one of its three major goals 
(USDOI and USDA 2014) and the U.S Forest Service 
is mandated to restore natural resources to be “more 
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resilient to climate change” (USFS 2012). However, 
there are few standard metrics available to easily 
evaluate or quantify resilience using existing theory 
(Angeler and Allen 2016; Falk 2016). To manage 
for ecological resilience, land managers must have 
a standardized and scientifically credible method 
of quantifying resilience that is based on tangible 
concepts that can be included in land planning 
analyses (Stephens et al. 2016; Colavito 2017).

We suggest that the first step towards moving from 
resilience theory to its application in land management 
is to create a simple operational method. In this paper 
we present a method to quantify resilience within a 
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specific area, defined as a single ecosystem, a planning 
area, or an entire landscape. The primary assumption 
of this proposed method is that ecosystems are most 
resilient when they are within the broad of historical 
range and variation (HRV; Morgan et al. 1994) 
because HRV represents those conditions under which 
most of the biota has evolved. However, rapid climate 
change, land use actions, exotic species invasions, and 
a host of other human impacts into the future requires 
a broader assessment than HRV alone. Therefore, 
we have integrated a companion FRV (future range 
of variation) expression into this method to help 
inform future land management targets. Overlaps 
between HRV and FRVs may provide possible targets 
for specific management-oriented environmental 
variables. We show examples of how to deploy this 
method into operational use, even in cases where there 
is little apparent overlap between the HRV and FRV.

HRV-RESILIENCE METHOD
Creating HRV and FRV Time Series
To demonstrate our HRV-based resilience method, 
we use simulation modeling to derive time series 
representing historical and future ranges of variability. 
We recognize the limitations of a simulation approach 
to quantify HRV—mainly that all models simplify 
reality and are subject to bias from input parameters 
and model mechanics (Keane 2012; Loehman et al. 
2016). But simulations can provide the necessary 
temporally deep, spatially-explicit, and rich historical 
data that can be difficult to obtain elsewhere 
(Humphries and Bourgeron 2001). Moreover, 
modeling provides a single, consistent platform for 
generating the required data to characterize HRV 
for multiple ecological attributes and for generating 
projections of FRV under future climates.

All examples presented in this paper were generated 
from the mechanistic landscape model FireBGCv2 
(Keane et al. 2011b) as implemented for the 128,000 
ha East Fork of the Bitterroot River (EFBR) watershed 
on the Bitterroot National Forest, Montana, USA. The 
lower elevations of the EFBR are dry, mixed-conifer 
ecosystems of ponderosa pine (Pinus ponderosa var. 
ponderosa) and Douglas-fir (Pseudotsuga menziesii 
var. glauca) generally with a primarily frequent, 
low-severity fire regime (Holsinger et al. 2014). 

Vegetation at montane elevations are mixed conifer 
forests (primarily lodgepole pine, Douglas-fir, and 
subalpine fir (Abies lasiocarpa)) with mixed severity 
fire regimes, while high elevations are whitebark 
pine (Pinus albicaulis), subalpine fir, and spruce 
(Picea engelmannii) forests with a long fire-free 
interval, high-severity fire regimes. The EFBR has 
been used in past FireBGCv2 simulation studies 
with its initialization, parameterization, calibration, 
and validation described in various papers for the 
EFBR and other landscapes (Clark et al. 2017; 
Holsinger et al. 2014; Loehman et al. 2011). We 
illustrate the HRV- and FRV-resilience procedures 
using simulations of historical conditions and three 
future scenarios that incorporate one future climate 
and three levels of wildfire suppression (0%, 50%, 
and 98% fires suppressed) under a climate scenario 
(CRM-C5 RCP 8.5) that represents continuation of 
current global emissions trends (Rupp et al. 2013). 
The EFBR landscape’s current conditions circa 2010 
were used as the initial conditions at the beginning of 
the simulation; these conditions were measured in the 
field in 2009-2010 (Holsinger et al. 2014). We output 
a suite of landscape response variables (table 1) at 
ten-year intervals for five replicates of 500-year long 
simulations (using only the last 400 years of output to 
eliminate the influence of initial conditions for a total 
of 200 observations).

Quantifying Resilience Using Single  
and Multiple Response Variables
We use tree basal area (BA, m2 ha-1), often used 
to represent forest biomass and is commonly used 
in management, in the box-and-whisker diagrams 
that show median, 25th, and 75th percentile BA for 
each 10-year observation interval for the five, 400-
year simulations (fig. 1). The comparative range 
of variation in BA among the four scenarios is 
immediately evident: the current BA (“Present”; the 
line on the graph in fig. 1) is well within the HRV 
interquartile range (IQR, 25th to 75th percentile); 
indicating it is not departed from the simulated, 
historical baseline (p<0.001). The FRV3 scenario has 
a significantly smaller IQR and higher median BA 
(pairwise t-test against FRV1 and FRV2 respectively, 
p<0.001 and p<0.001) than the other scenarios because 
the high (98%) level of fire suppression implemented 
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in this scenario maintains high biomass on the 
landscape and minimizes fire-caused biomass loss. 
Its median BA falls within the IQR of the historical 
reference. The FRV2 scenario has a lower median 
BA, consistent with a lower implemented suppression 
level (50%), and a smaller zone of overlap with the 
historical reference, in which BA is departed for at 
least half of the simulation years (p<0.001). There 
is little overlap between HRV and FRV1: most 
observations are outside of the historical reference, 
where tree mortality from frequent fires and climate 
stress result in persistently lower BA than the historical 
reference With this this limited univariate example, 
it is interesting that greater fire suppression in the 
future (FRV3) may keep stands within HRV under new 
climates.

In the univariate method, a simple percentile number 
can be used as a metric for resilience. In our example 
above, we would calculate the percentile in which 
the current (Present) landscape BA resides within 
the HRV distribution of BA and use that as a relative 
score to describe resilience (Present was in the 64th 

Variable Code Description Units

Composition FA-Spp, FS-Spp Proportion of the landscape occupied by the fire-adapted 
species (FAD) and fire-sensitive species (FSS), respectively

%

Structure Seed, Sap, Pole, 
Mat, Lrg, VLrg

The proportion of the landscape occupied by each of five 
structural stages

%

Basal Area BA Average basal area across all stands on the landscape m2 ha-1

Coarse woody debris CWD Average loading of CWD (logs greater than 8 cm in 
diameter) across all stands in the landscape

kg m-2

Fine woody debris FWD Average loading of FWD (woody fuel particles less than 8 
cm diameter) across all stands in the landscape

kg m-2

Outflow OUTFLOW Amount of surface water that flows out of a stand each year 
averaged across all stands

kg water m-2

Net Primary Productivity NPP Average biomass production of the stand across the 
landscape

kg C m-2

Area burned BURN Average annual area burned ha

Table 1—Response variables output from the FireBGCv2 model and used in the multivariate analysis to determine a metric for 
resilience.

Figure 1—An illustration comparing historical (HRV) and 
future (FRV) ranges of variability in basal area (m2 ha-1 )  
compared with current conditions (Present; the initial 
conditions at the start of the simulation) of the EFBR 
landscape. There appears to be a zone of overlap between 
HRV and FRV2 and FRV3, which may provide a possible 
reference for management. FRV1, FRV2, and FRV3 are 
future simulations with RCP4.5 climates with zero, 50 
percent and 98 percent of the fire ignitions suppressed 
respectively. The box in this figure are the 25th and 75th 
interquartiles and the whiskers represent the range of the 
data. 
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percentile or a score of 64 where 50 would be high 
resilience and below 25 and above 75 would be low 
resilience, for example). Central tendency statistics 
that define the variability of the historical envelope 
and standard probability tests  (e.g. one-sample 
t-test, or one-sample Wilcoxon test for non-normal 
data) can be used to determine where in the HRV 
BA probability distribution is the current value for 
BA and if it is significantly different (departed) 
from the HRV value. The probability of the current 
condition in HRV distribution can also be used as a 
score (Steele et al. 2006), where anything above an 
alpha significance level of 0.05, for example, could 
be considered resilient. For current BA in the EFBR, 
the probability of the current landscape condition in 
the HRV distribution is 0.69 which is less than our 
designated alpha level (p>0.05) so this landscape could 
be considered resilient. Keane et al. (2011a) evaluated 
several similarity indices for use in HRV comparisons 
and found that the Sorenson’s Index performed best 
for this task. The Sorenson’s Index (number between 
1 and 100) is computed for each instance in a time 
series and the average is compared against current 
conditions.

We used the PCA approach to assess the importance of 
multiple variables in the expression of HRV (fig. 2)  
the first two principal components, which together 
explained around 45 percent of the variance in the 
simulation variables, Comparison of the PCA results 
across all FRV climate-management scenarios provides 
insight into the potential impacts of changing climate 
and fire regimes on future landscape resilience (fig. 
2). Unlike results from the single variable BA (Figure 
1), all three fire management scenarios (0, 50, 98% 
suppression, respectively) under the RCP8.5 climate 
depart from HRV, especially FRV3. Moreover, the 
state of the contemporary landscape (green asterisk) 
is well outside of HRV and all three FRVs, indicating 
that it has low resilience when multiple variables 
are used, regardless of climate or fire management 
scenario, in contrast to the univariate case. This 
illustrates the value of using multiple variables when 
evaluating resilience. The zones of overlap among 
the three future fire management scenarios and HRV 
become smaller as suppression increases. Also notice 
that the zone of overlap for FRV1 and FRV2 (figs. 
2B, 2D, 2F) includes all of the HRV “ellipse” so any 

treatment that moves the landscape towards HRV will 
also be viable in the future.

Creating a resilience metric from multivariate time 
series is more difficult. A statistical approach, such 
as MANOVA, might be used to determine if the 
current condition is significantly outside the PC1-PC2 
centroid, and the magnitude of that distance relative 
to the acceptable distance could be the metric. In our 
example, we set the confidence ellipse of HRV at 
0.68 or an ellipse containing 68% of the observations. 
We then computed the ellipse probability that 
encompassed the current EFBR landscape (Present) 
at 0.995. If we assume that a 95 percent confidence 
level ellipse represents a resilient landscape, this 
test would indicate that the present landscape is in a 
non-resilient condition. The multivariate PCA HRV-
resilience approach can also employ box-and-whisker 
diagrams using the scores of PC1 from the HRV time 
series to compare to current conditions similar to our 
use of BA above. We can also average Sorenson’s 
Index calculations for each variable against the current 
conditions across all points in the HRV time series to 
obtain a resilience metric that encompasses multiple 
variables.  

Managing For Resilience
Enhancing resilience, especially in fire-excluded 
forests, will probably entail some degree of either 
ecosystem restoration or acceptance of change 
(Stephens et al. 2016). Other things being equal, 
restoration treatments should be designed to move the 
current landscape in the direction of HRV but with an 
eye towards anticipated future conditions (Falk 1990). 
For example, the current landscape BA in figure 1 is 
well within HRV but FRV1 and FRV2 scenarios have 
significantly less BA. Silvicultural thinnings combined 
with prescribed fire treatments could be used to reduce 
BA of fire-sensitive species to enhance the vigor 
and growth of fire-adapted species in stands in the 
EFBR landscape to make the restoration treatment 
more effective into the future. Alternatively or in 
combination, a higher proportion of natural ignitions 
could be allowed to burn without full suppression, 
reducing the effect of fire exclusion as illustrated in 
our simulation results (figs. 1, 2). Designing treatments 
using the multi-variate PCA results may be a bit more 
difficult, but based on the results in figure 2 and the 
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Figure 2—Results of the PCA analysis of the FireBGCv2 simulations for the EFBR landscape for the historical scenario 
(HRV; blue dots, reference) and for the future RCP8.5 climate (FRV1, FRV2, FRV3) under three fire suppression scenarios 
(no suppression, 50% ignitions suppressed, 98% ignitions suppressed) showing the simulation years (A,C,E) and the circles 
that contain 60 percent of the variation in the spread of the points (B,D,F). The green asterisk at the lower left of graphs A, C, 
E represents the condition of the landscape today. FRV1 is shown in A and B, FRV2 is C and D, and FRV3 is E and F. The 
variable names in B, D, and F are defined in table 1 and indicate the importance of the variables in the PC1 and PC2 scores.

A B

C D

E F
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variables in table 1, possible restoration goals may be 
to increase large (Lrg) and very large (VLrg) diameter 
structural stages on the landscape by thinning or 
prescribed burning in overly dense stands to ensure 
that smaller diameter pole stands eventually grow into 
the large structural stages. 
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