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TreeMap, a tree-level model of 
conterminous US forests circa 2014 
produced by imputation of FIA plot 
data
Karin L. Riley   1 ✉, Isaac C. Grenfell1, Mark A. Finney1 & Jason M. Wiener2

A 30 × 30m-resolution gridded dataset of forest plot identifiers was developed for the conterminous 
United States (CONUS) using a random forests machine-learning imputation approach. Forest plots 
from the US Forest Service Forest Inventory and Analysis program (FIA) were imputed to gridded c2014 
landscape data provided by the LANDFIRE project using topographic, biophysical, and disturbance 
variables. The output consisted of a raster map of plot identifiers. From the plot identifiers, users 
of the dataset can link to a number of tree- and plot-level attributes stored in the accompanying 
tables and in the publicly available FIA DataMart, and then produce maps of any of these attributes, 
including number of trees per acre, tree species, and forest type. Of 67,141 FIA plots available, 62,758 
of these (93.5%) were utilized at least once in imputation to 2,841,601,981 forested pixels in CONUS. 
Continuous high-resolution forest structure data at a national scale will be invaluable for analyzing 
carbon dynamics, habitat distributions, and fire effects.

Background & Summary
Forest data at the level of individual trees are used for a wide variety of applications, including estimation of for-
est biomass1 and terrestrial carbon2, as well as more specialized projects such as modelling the risk of wildland 
fire to carbon resources3, our ultimate objective. Detailed forest inventories are conducted routinely across the 
forested areas of the US as part of the US Forest Service’s Forest Inventory and Analysis program (FIA). The FIA 
databases contain tree-level information from thousands of 672m2 plots that are systematically located and peri-
odically remeasured4. However, the sampled plots are widely separated (at a density of approximately one plot 
per 24.3 km2) and thus do not provide wall-to-wall coverage of forest information that is critical to regional- or 
continental-scale modeling and analysis5. This paper reports on the development of a mapping methodology and 
data product containing continuous forest inventory data imputed at 30 × 30m resolution from the FIA sample 
plots across the continental US (CONUS).

The FIA plot identifiers were imputed at 30 × 30m resolution for all CONUS forests using a machine-learning 
approach called random forests (Fig. 1). Random forests is being used increasingly in the ecological sciences6–8 
because of the many advantages it offers; for example, 1) the user does not need to specify the form of relation-
ships among variables (as is required in regression and some other techniques), and 2) it can employ both contin-
uous and categorical variables6. These two advantages were pertinent to this project, in which interrelationships 
amongst the variables may be complex and non-linear, and two variables were categorical9. Due to the non-linear 
and categorical nature of the input variables, most other approaches including gradient nearest neighbour (GNN) 
were precluded9.

The random forests method requires two data sets: 1) reference data, comprised of detailed observations at 
selected sparse locations across the landscape, and 2) target data, a set of less detailed observations available for 
the entire landscape10. Random forests then uses a set of predictor and response variables specified by the user 
to select the best match from the reference data and impute it to each pixel of target data10. For reference data, 
we used field measurements of forest plots by the U.S. Forest Service’s Forest Inventory and Analysis program 
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(FIA)4,11. For target data, we used raster data at 30 × 30 meter spatial resolution provided by the LANDFIRE pro-
ject12,13. Though other sources of forest plot and landscape data exist, we chose the LANDFIRE data because they 
are compatible with a set of fire risk simulations for the US14, enabling us to conduct analysis of carbon risk in 
the future, and we chose the FIA forest plot data because they are nationally consistent and have stringent quality 
control. Both the LANDFIRE and FIA data are publicly available, another requirement for this study. The output 
is a raster of IDs of the best-matching plots at 30 × 30m spatial resolution (Fig. 1); we name this output dataset 
TreeMap 2014.

In an earlier project, we used a similar method to impute FIA data to LANDFIRE c2008 rasters for forests of 
the western U.S9. LANDFIRE provides mapping on a 2-year return interval; here we update the previous work to 
the year 2014 and extend the spatial extent across CONUS, thereby increasing the number of source plots avail-
able for imputation and raising the accuracy of the dataset. In addition to the set of location, topographic, and 
biophysical variables9, we added two new variables to capture recent disturbances to the forest.

The c2008 dataset15 is currently being used by land managers to inventory habitat types at regional scales 
(Daniel Couch, personal communication 10/29/2018), and by researchers to evaluate tradeoffs between fuel man-
agement and timber harvest targets16 and model hydrologic effects of fuel treatment (Nicholas Povak, personal 
communication, 10/29/2019). The three response variables (forest cover, height, and vegetation group) were cho-
sen to serve as estimators of forest carbon at risk from impact by wildfire, one of our primary goals for developing 
these data. Other potential future uses include 1) modelling effects of surface roughness on wind, 2) modeling 
fuel treatment effect on future vegetation and fire risk, and 3) species envelope modelling, among others.

INPUT 1: 
Reference Data 

Forest plot data from FIA 

Plot 1 
Average temp. = 67 

Veg. group = Douglas fir  
Tree 1 = Douglas fir 

Tree 2 = Ponderosa pine 
Etc. 

 

Plot 67,141 
Average temp. = 72 

Veg. group = Ponderosa 
pine 

Tree 1 = Ponderosa pine 
Tree 2 = Ponderosa pine 

Etc. 
 

INPUT 2: 
Target Data 

Raster landscape data from 
LANDFIRE 

65 65 66 
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68 69 70 

PP DF DF 
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Vegetation  
group 

Random Forests Algorithm 

Output: 
Grid of forest plot IDs 

20 8 2 
20 1 2 
13 13 14 

Plot 1 
Tree 1 = Douglas fir 

Tree 2 = Ponderosa pine 
Etc. 

Fig. 1  The project workflow. FIA forest plots (reference data) and raster landscape data from LANDFIRE 
(target data) were employed in a random forests algorithm that imputed the plot data to all forested pixels on 
the CONUS-wide landscape.
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Methods
Disturbance analysis.  Methods used for random forests imputation in the previous edition of this dataset9 
did not incorporate any variables related to disturbances on the landscape. Consequently, the dataset may have 
underestimated dead trees in recently disturbed areas and limited its utility, for example, in estimating hazard to 
wildland firefighters from falling snags17, habitat for cavity-nesting birds, and potential coarse woody fuel sources. 
We therefore conducted an analysis to address this concern, since based on the results, variables could be added to 
the methodology of the new c2014 dataset to better capture the effects of disturbance on forest structure.

To this end, the number of dead trees in the reference (FIA plot) data was estimated from the TREE table 
within the FIA database via the STATUSCD field that represents the condition of each tree: 1 = live tree, 2 = dead 
tree, and 3 = cut and removed. Further, the TREE table indicates whether dead trees qualify as “standing dead” via 
the STANDING_DEAD_CD field; to qualify as standing dead, the tree must be at least 5” DBH, have a bole that 
has an unbroken length of at least 4.5 feet, and lean less than 45 degrees from vertical. With these fields, we calcu-
lated for each plot the number of standing dead trees (STANDING_DEAD_CD = 1). We found that disturbance 
by fire and insect/disease increased the number of dead trees on a plot; the effect was statistically significant for 
fire. Other disturbances (e.g. timber harvest) did not increase the number of dead trees on a plot. Therefore, we 
retained only fire and insect/disease as disturbance categories, as recorded by FIA in the CONDITION table via 
the fields DSTRBCD1, DSTRBCD2, DSTRBCD3 (Disturbance Code 1, 2, and 3) and DSTRBYR1, DSTRBYR2, 
and DSTRBYR3 (Disturbance Year 1, 2, and 3)4. If a plot was disturbed by either of these causes more than once 
during the period of record, we assigned the most recent disturbance, with any disturbance by fire being recorded 
preferentially over insect/disease.

To determine which pixels of target data were affected by disturbance, we combined LANDFIRE’s annual 
disturbance grids to make a single grid of all pixels that were disturbed between 1999 (the first year the grids were 
created) up to 2008 (the year of the first tree list dataset). We tracked only disturbance types that were expected 
to have an impact on the number of dead trees; therefore we tracked only fire, insect and disease and unknown 
disturbances, and not timber harvest or herbicide application. If a pixel was disturbed more than once, we used 
the same logic we applied to the forest plot data, assigning the most recent disturbance, with any disturbance by 
fire being preferentially recorded over insect/disease.

We found that the c2008 dataset underpredicted dead trees in burned areas, based on a two-sided 
Kolmogorov-Smirnov test (p-value = 1.2−13, n of burned plots = 356, n of undisturbed plots = 12,939). We there-
fore added a categorical class variable that tracked disturbance status (burned, insect/disease, or undisturbed) and 
a second numeric variable that tracked time since disturbance, since stand dynamics would be expected to change 
over time, as some dead trees fall.

Data sources.  Two sets of data are required for random forest imputation: 1) the reference data are detailed 
measurements at specific points on the landscape (for this project, the reference data are measurements from 
FIA forest plots), and 2) the target data, or spatial data for the entire landscape, to which the reference data are 
imputed (in this case, the target data comes from satellite-derived vegetation, topography, and biophysical grids 
produced by the LANDFIRE project12,13). The suite of predictor and response variables must be available in its 
entirety for both the reference and target data. In essence, the random forests methodology takes detailed meas-
urements that are available only at sparse locations and assigns them to maps of more generalized landscape 
characteristics, in order to model detailed measurements continuously across the landscape.

Target data.  LANDFIRE gridded data contributed three vegetation variables (Existing Vegetation Cover 
(EVC), Existing Vegetation Height (EVH), and Existing Vegetation Group (EVG)), three topographic vari-
ables (slope, aspect, and elevation), and two disturbance variables (disturbance type and year) (Table 1). In 
the LANDFIRE target data, spatial mapping of vegetation type is done under the raster layer called Existing 
Vegetation Type13, which maps the existing locations of an ecological systems classification;18 from the EVT raster 
we drew the broader Existing Vegetation Group (EVG) for this analysis. The EVG is a broader classification into 
which several EVTs are grouped. A total of 76 EVGs were present in CONUS (Online-Only Table 1). We obtained 
a suite of six biophysical variables in raster format by direct request from LANDFIRE: photosynthetically active 
radiation, precipitation, relative humidity, maximum temperature, minimum temperature and vapour pressure 
deficit12,19. These grids were generated by the biophysical simulation model WxBCG, and estimate average annual 
weather12. All grids were at 30 × 30m spatial resolution and for CONUS extents. As part of this submission, we 
obtained permission from LANDFIRE to store these grids on figshare under the dataset name, “LANDFIRE 
Biophysical Gradient Raster Datasets”20.

We ran the imputation for forested areas in the continental US (CONUS), defined as those having greater 
than 10% tree cover. This definition is used by FIA to demarcate forested versus non-forested areas (however, if 
a plot that was historically forested was disturbed and is temporarily below 10% cover but expected to recover, 
FIA may still consider a plot to be forested; we omitted any FIA plots or pixels below 10% from the imputation 
for consistency). In order to limit the rasters to pixels with forest cover, we subset the EVC raster to those classi-
fied as forest with 10% or greater cover. We used this subset of pixels to then mask the EVT raster, and discarded 
pixels classified as developed or agricultural forest such as orchards or urban forest. Because vegetation type is 
categorical, random forests could not perform the imputation unless each EVG had at least one forested plot 
keyed to it (see Reference Data subsection below for description of methodology for keying plots to EVG). Six 
EVGs were present in our forest mask that had no plots keyed to them, and the following substitutions were per-
formed: 1) we eliminated 2,483 pixels that had EVG 649 (Tallgrass Prairie) which were within the forest mask, 2) 
we recoded 606 pixels of EVG 692 (Spruce Flats and Barrens) to EVG 693 (Spruce-Fir-Hardwood Forest) as this 
EVG was similar in spatial location and species type, 3) we recoded EVG 705 (Introduced Wetland Vegetation) 
to EVG 668 (Eastern Small Stream Riparian Forests), as this EVG was similar in spatial location and description, 
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4) we omitted EVG 730 (Transitional Forest Vegetation) since it signifies recently logged or severely disturbed 
areas unlikely to have substantial forest cover, and 5) we manually recoded some plots to Loblolly Pine Forest and 
Woodland (EVG 697) and Loblolly Pine and Loblolly Pine-Slash Pine Forest and Woodland (EVG 698) (regard-
ing these two EVGs, see Reference Data subsection below for more detail on methods). The final forest mask had 
2,841,601,981 forested pixels.

LANDFIRE bins forest EVC into nine categories: 10–20%, 20–30%, 30–40%, 40–50%, 50–60%, 60–70%, 
70–80%, 80–90%, and 90–100% cover. We assigned each pixel the midpoint of the bin it represents (e.g. 15, 25, 
35, 45, 55, 65, 75, 85, and 95%).

Similarly, EVH is binned into five categories in the LANDFIRE raster, which we reclassified to a single value 
for each bin at its midpoint: specifically, 0–5 m reclassified to 3, 5–10 m reclassified to 8, 10–25 m reclassified to 
18, 25–50 m reclassified to 38, and >50 m reclassified to 70 (the tallest plot in our database was 89 m, so this cor-
responded to the arithmetic mean of the bin). EVH corresponds to the height of the dominant vegetation.

We recoded LANDFIRE’s annual disturbance layers, 1) limiting them to only two disturbance types (fire and 
insect/disease), and 2) retaining only the most recent disturbance type and year between 1999–2014, with fire taking 
precedence over insect/disease, since fire was the only disturbance type that had a statistically significant effect on 
prediction of tree mortality. In other words, if a pixel burned at any time during 1999–2014, it was assigned that 
disturbance code, even if it was affected by a more recent insect/disease infestation. If the pixel was affected only by 
insect/disease and never by fire during 1999–2014, it was assigned the code and year of the insect/disease infestation.

In order to obtain the location of each pixel, we calculated the latitude and longitude of each pixel’s centroid.

Reference data.  We obtained Forest Inventory Analysis (FIA) data version 1.7 by state for all 50 states 
from the online and publicly available FIA Data Mart on 10/31/201711, using the attributes for aspect, slope, 
and elevation as well as individual tree diameter, height, species, status (dead or alive), and disturbance history 
(Online-only Table 2). The tree-level attributes were not used as variables in the random forests model but were 
necessary for various applications of the output TreeMap database. FIA measures plot-level and tree-level attrib-
utes on a regular spatial and temporal interval in all 50 states using a standardized plot design4 (Fig. 2). If a plot 
spans different land use or vegetation conditions (e.g. harvesting or recent fire affected only part of the plot), 
FIA flags this plot as multi-condition4; we endeavored to use only single-condition plots in the imputation so 
that they would be more or less homogenous. Of the 67,141 plots we obtained from FIA, 65,652 (97.8%) were 
single-condition and 1489 (2.2%) were multi-condition. We obtained a second set of 2,319 multi-condition plots 
inventoried in 2014; we used this second set of plots in model validation.

We obtained several variables needed for the imputation directly from FIA’s online database: aspect, slope, 
elevation, disturbance type, and disturbance year (Online-only Table 2). FIA makes public only the approximate 
location of plots because of a provision in the Food Security Act of 19854. Plot locations are “fuzzed” within a 
1-mile radius (random error added to the true plot coordinates) and plot locations on private land are swapped 
with other plots in up to 20% of cases4. A Memorandum of Cooperation with FIA permitted us to use the true 
plot coordinates (not fuzzed) as location variables and for extracting biophysical variables from the LANDFIRE 
grids (Online-only Table 2).

We used the Forest Vegetation Simulator (FVS) to calculate plot-level forest cover and height from the tree 
records21,22. Plot locations were overlaid with a geospatial layer of geographical FVS variants that contain different 
equations for allometry (including crown radius) and growth. Several hundred plots fell outside the FVS variant 

Category Data layer/variable name Data URL or source Data version

Vegetation Existing Vegetation Cover (EVC) www.landfire.gov/version_comparison.php?mosaic = Y 1.4.0 (c2014)

Existing Vegetation Height (EVH) “ “

Existing Vegetation Group 
(EVG) derived from the Existing 
Vegetation Type (EVT) raster

“ “

Topography Aspect “ 1.2.0

Slope “ “

Elevation “ “

Biophysical Photosynthetically active 
radiation

On figshare under the name, “LANDFIRE Biophysical 
Gradient Raster Dataset”20 NA

Precipitation “ “

Relative humidity “ “

Maximum temperature “ “

Minimum temperature “ “

Vapor pressure deficit “ “

Disturbance Disturbance code (DistCode) www.landfire.gov/version_comparison.php?mosaic=Y
Annual grids from 
1999–2014 including both 
disturbance type and year

Disturbance year (DistYear) “ “

Location Latitude and longitude Obtained by calculating the centroid of each 30x30m pixel 
in the raster

Any LANDFIRE version 
since the grid remains the 
same across versions

Table 1.  Target data sources and versions.
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shapefile boundaries by short distances, appearing in bodies of water or Canada or Mexico; these were manually 
assigned to the closest variant as they were more likely to be the result of inaccuracies in the variant shapefile 
than locations measured on the ground at FIA plots. We then calculated cover and height via FVS’s “StrClass” 
keyword22. Cover is calculated by estimating the percent of ground area covered directly by the crowns of trees, 
and corrects for crown overlap22. While cover figures calculated this way are continuous, we rounded them to the 
midpoint of the nearest 10% cover bin to match the ordinal classification in the LANDFIRE EVC raster. We refer 
to these bins by using the midpoint in the remainder of this manuscript. In order to calculate a single plot-level 
height value from the individual tree records, the FVS “StrClass” routine divides the forest canopy into different 
strata, when appropriate, via gaps in the distribution of tree heights. We assigned to each forest plot the height of 
the top stratum, which was computed by averaging the height of the nine trees centered around the 70th percentile 
tree22. Height values calculated this way were also continuous, and we reclassified them to match the midpoint of 
the nearest of the five bins used in the LANDFIRE EVH map (i.e 3, 8, 18, 38, and 70m).

FIA plots were keyed to the same set of Ecological Systems appearing in the EVT raster18 using LANDFIRE’s 
keying system23. The keying system, or “AutoKey”, uses a ruleset for each of 16 regions in the U.S. Inputs to the 
AutoKey include: 1) the basal area by live tree species, 2) for plots in the Western U.S., where understory data is 
recorded by FIA, cover of understory species, 3) a list of seedling species, 4) the isobioclimate24, 5) the elevation, 
6) the ecological subsection25, 7) the EPA ecoregion26,27, and 8) landform (e.g. flat plains, hills)18,28. This data is 
first run through the “ruderal” classification system; if a plot receives a ruderal classification, then that is the 
final classification; otherwise the plot is run through the ecological systems key. The AutoKey outputs an EVT, 
which we then reclassified to the broader EVG. We found that no plots had classified to the Loblolly Pine Forest 
and Woodland (EVG 697) or Loblolly Pine and Loblolly Pine-Slash Pine Forest and Woodland (EVG 698) EVGs 
despite the presence of plots stocked with loblolly pine and slash pine; instead plots stocked with these tree types 
had all classified to ruderal types. We manually identified a subset of plots composed of loblolly and reassigned 
their EVGs, with 44 plots fitting the description of Loblolly Pine Forest and Woodland (EVG 697) and 24 fitting 
the description of Loblolly Pine-Slash Pine Forest and Woodland (EVG 698).

Random forests imputation.  Random forests leverages a “forest” of decision trees to make predictions6 
(Fig. 1). Here, we used the yaImpute package in R to run a modified random forests imputation9,10,29. The refer-
ence data (from observed FIA plots) were used in random forests to construct 249 decision trees per LANDFIRE 
zone, 83 for each of the response variables (Existing Vegetation Cover (EVC), Existing Vegetation Height (EVH), 
and Existing Vegetation Group (EVG)). Previous experience with 500 trees showed only slight improvement in 
accuracy at great computational burden9.

In the construction of each tree in the random forest, 66% of the observations (FIA plots in this case) are 
randomly chosen, with the rest of the observations being used to calculate an out-of-bag error rate6. Out-of-bag 
error rates for this project were low, ranging from 0.003164–0.023375 for EVC, 0.000151–0.002316 for EVH, and 
0.000000–0.006213 for EVG, depending on the zone. As mentioned above, a requirement of random forests is 
that the same suite of predictor and response variables must be present for both the target data and the reference 
data. The predictor and response variables are used to make binary partitions in the data during the construction 
of each decision tree. For a given tree, the data start in a single group or “bucket”, then at the first node, several 
predictor variables are randomly chosen for assessment (the number chosen is the square root of the total number 
available, so if nine predictor variables are used in the imputation, then three would be chosen at each node). The 
predictor variables are assessed to determine which reduces the variance in the response variable the most, then 
that variable is selected and applied in the binary partitioning of the data (or splitting of the data into two groups 
or buckets). Binary partitioning of each tree continues until the variance in the data can’t be significantly reduced 
or partitioning would result in fewer than five observations in a bucket6.

Subplot
(radius=7.3m)

Distance 
between subplot 
centroids=36.6m

Fig. 2  The design of FIA forest plots includes four subplots where trees larger than 12.7 cm at breast height are 
measured4. Each subplot is 7.3 m in radius with three subplots arranged at 120-degree spacing around a center 
subplot, with a separation distance between the subplot centers of 36.6 m4.
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Note that in this application of random forests, where several response variables can be used at once, the 
response variable isn’t a response variable in a traditional sense, since what we endeavour to predict for each land-
scape target pixel is the ID of the best-matching plot and not a value for the response variable itself. The predictor 
and response variables are used to find associations among the reference data, thus identifying which forest plots 
are most like each other.

In order to make predictions for a given pixel of the target data, the values of the predictor and response var-
iables at that pixel are run through each decision tree, and the IDs of the plots that appear in the terminal bucket 
with it are recorded6,9. The forest plot that is assigned to the pixel is the one that appears most frequently with it in 
the 249 terminal buckets – hence the ID of that forest plot is assigned to the pixel (with any ties split randomly)6,9. 
Once all pixels in the landscape have been run through random forests, the result is a raster grid of best-matching 
FIA forest plot IDs at 30 × 30m spatial resolution (Figs. 1 and 3). The plot IDs can be tied back to the FIA database 
in order to map many different attributes, including number of live and dead trees, species presence/absence, etc.

The yaImpute package can process a maximum of 32 classes of data at a given time10. Because more than 32 
EVGs were present at the national scale, we subdivided the data into LANDFIRE map zones (Fig. 4) and ran the 
imputation for one zone at a time. In running the imputation for each zone, we utilized only the FIA plots with 
EVGs that appeared in that zone.

Data Records
The imputed forest data are stored in the US Department of Agriculture Research Data Archive15. The records 
consist of: 1) a grid of imputed plot IDs at 30 × 30m resolution in GeoTIFF format, 2) a table containing records 
for each tree on each plot in both.mdb and.txt format, and 3) metadata with details of data architecture and attrib-
utes. Many more plot characteristics can be accessed via the FIA DataMart11, which serves the data by state in a 
variety of formats including HTML, XLS, SQLITE, and CSV.

The LANDFIRE Biophysical Gradient Raster Datasets are shared via figshare with the permission of 
LANDFIRE20.

Technical Validation
We found that 62,758 (93.5%) of 67,141 available plots were used at least once for imputation. In assessing the 
accuracy of the imputed dataset, there are several pertinent questions. The ultimate measure of agreement is 
how well the imputed dataset replicates conditions on the ground, which can be assessed at selected locations by 
comparing the attributes of the output grid of plot IDs to a set of recently measured FIA plots. Since the target 
LANDFIRE data were based on satellite imagery for the year 2014, the imputed dataset also has a vintage of 2014, 

Fig. 3  Aerial view of tree list output for a section of the Olympic Peninsula, Washington. Each plot ID appears 
with a different color. Plots cluster along biophysical gradients driven by mountainous topography and stream 
corridors.

Fig. 4  Map of LANDFIRE zones and forested pixels. Black outlines illustrate CONUS subdivided into 
LANDFIRE zones. Non-forested pixels (for which the imputation was not performed) are shown in white. 
Forested pixels for each EVG class are assigned a unique color.
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and we used a subset of the FIA plots measured in 2014 to assess the accuracy of the imputed dataset (using FIA 
plots from previous years would not account for subsequent growth or disturbances between the time the plot 
was measured and 2014). We obtained the locations of 2,319 multi-condition FIA plots measured in 2014 and 
leveraged these in the validation of the imputed dataset. The accuracy of the imputed dataset depends heavily on 
the predictor variables that were drawn from the LANDFIRE target data; hence a second issue is how well the 
target LANDFIRE data itself compared to the conditions on the ground, which can be assessed using the same 
set of FIA plots from 2014. Errors and inaccuracies in the LANDFIRE target dataset will naturally propagate to 
the imputed dataset. Logically, then it also makes sense to compare the imputed dataset to the LANDFIRE target 
data on a pixel-by-pixel basis for all 2,841,601,981 pixels; if the methodology is performing well, then the values 
of forest cover (EVC), height (EVG), and vegetation group (EVG) derived from the imputed forest plots will 
correspond well with the values in the target LANDFIRE data. Agreement was measured in terms of the pro-
ducer’s accuracy (probability that a category on the ground received that classification in the imputed map) and 
the user’s accuracy (probability that the imputed class in fact represents that class on the ground). In summary, 
validation was conducted to quantify the agreement between: 1) the plot conditions measured on the ground by 
FIA at the locations of the 2,319 multi-condition plots and the imputed dataset at these same locations, 2) the plot 
conditions at the locations of the 2,319 FIA plots and the LANDFIRE target data at these same locations, and 3) 
the LANDFIRE gridded target data and the imputed gridded data. Because we added disturbance code as a new 
predictor variable, we also assessed its accuracy by comparing the imputed grid and the LANDFIRE target data.

Agreement between the FIA reference data and the imputed dataset.  We checked for matches 
in three different attributes to quantify agreement between the gridded imputed dataset and the FIA reference 
data, at the locations of 2,319 multi-condition FIA plots measured in 2014: 1) the forest cover (EVC), 2) the forest 
height (EVH), and 3) the two tree species with the highest basal area. We chose the last measure in lieu of the 
EVG, as tree species are a direct and measurable characteristic of a forest plot and are not subject to any uncer-
tainty in the vegetation group (EVG) categorization. The splayed footprint of a single FIA plot (Fig. 2) is 40.25 m 
in radius and spans several 30 × 30m pixels4. The combined area of the four subplots is 672 square meters, a figure 
relatively close to the size of a single pixel of 30 × 30m imagery (900 square meters). We checked all pixels whose 
centroid fell within the FIA plot radius for matches in these attributes (EVC, EVH, and tree species), since one or 
more of the four subplots may have fallen on these pixels. For each pixel within an FIA plot’s radius, we used the 
plot identifier number of the imputed plot to look up the corresponding values for EVC, EVH, and tree species. 
We recorded whether the EVC and EVH values of at least one pixel within a plot’s radius matched the value calcu-
lated for the plot. As another measure of imputation accuracy, we calculated whether the weighted cover value of 
pixels within the plot’s radius was within 10% of the plot value, and whether the weighted height value was within 
5 m of the plot value. In order to evaluate whether the species composition was similar in the FIA and imputed 
data, we calculated the basal area of each live tree using the diameter (DIA field in the TREE table of the FIADB), 
which was then multiplied by the number of trees per acre (TPA_UNADJ field in the TREE table), and basal area 
was summed for each species on a plot using the species code (SPCD field in the TREE table). We then identified 
the species with the top two basal areas for each plot, and checked to see if any pixels within the plot footprint had 
at least one of the same top two species.

Of the 2,319 multi-condition plots obtained for the validation, 2,858 had at least one forested pixel within 
their plot radius (98.1%). Several possible reasons exist for this discrepancy, including that because the mask of 
forested pixels was derived from the LANDFIRE target data, there may be instances where a pixel is forested but 
LANDFIRE did not classify it as such or FIA may have measured trees on the plot but total cover may have fallen 
below the threshold of 10% cover. The cover bin of at least one pixel within a plot’s radius matched the plot value 
in 44.0% of cases, and the weighted cover value was within 10% of the plot value in 48.7% of cases (Table 2). The 
height bin of at least one pixel within a plot’s radius matched the plot value in 85.7% of cases, and the weighted 
height value of pixels within the plot’s radius was within 5 m of the plot value in 70.3% of cases. At least one of the 
two species with the highest basal area on the plot was also one of the top two species on at least one pixel within 
the plot’s radius in the imputed dataset in 76.7% of cases. While tree species itself was not either a predictor or 
response variable, the imputed dataset predicts tree species with a fairly high level of skill.

Agreement between the FIA reference data and the target LANDFIRE dataset.  We repeated 
the analysis described in the section above using the target LANDFIRE dataset instead of the imputed dataset. 
The rates at which matches occurred were similar for EVC and EVH variables whether comparing the plot values 
to the LANDFIRE grids or to the imputed grid (Table 2). Specifically, the cover value of at least one pixel within 
a plot’s radius matched in 43.7% of cases (versus 44.0% in the imputed data), while the weighted cover value of 

Response variable

At least one pixel within plot 
radius matches plot value in…

Imputed data

Weighted cover/height of pixels within plot 
radius is with 10%/5 m of plot value in…

Imputed dataTarget data (LANDFIRE) Target data (LANDFIRE)

Cover (EVC) 43.7% (1250) 44.0% (1257) 48.7% (1391) 48.7% (1393)

Height (EVH) 85.4% (2440) 85.7% (2449) 70.2% (2006) 70.3% (2010)

Tree species with two 
highest basal areas NA 76.7% (2192) NA NA

Table 2.  Summary of accuracy assessment for TreeMap 2014. Accuracy is reported in percent followed in 
parenthesis by number of cases out of 2,858 FIA plots used in validation.
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pixels within the plot’s radius was within 10% of the plot value in 48.7% of cases (versus 48.7% of cases in the 
imputed data; Table 2). The height value of at least one pixel within the plot’s radius matched in 85.4% of cases 
(versus 85.7% of cases in the imputed data), while the weighted height value of pixels within the plot’s radius was 
within 5 m in 70.2% of cases (versus 70.3% of cases in the imputed data). It would appear that the accuracy of 
the imputed dataset in the cover and height categories is heavily driven by the target data, a question investigated 
more thoroughly in the next section.

Agreement between the target LANDFIRE and imputed datasets.  Here, we compared the gridded 
input LANDFIRE data and the gridded output imputed dataset on a pixel-to-pixel basis because both datasets are 
30 × 30m grids. Since the target LANDFIRE data were used to generate the suite of predictor variables used to 
choose the best-matching plot for each pixel, if the random forests imputation performed well, the values of these 
variables should be similar in the imputed data.

From the raster of imputed plot IDs, we generated rasters based on the plot characteristics: one raster for cover 
(EVC), one for height (EVH), and one for vegetation group (EVG). Each of these rasters was then combined 
with the LANDFIRE target raster and the values compared on a pixel-by-pixel basis as a measure of imputation 
accuracy.

The forested mask of the LANDFIRE data included 2,841,601,981 pixels to which we imputed FIA plots. The 
imputed raster had the same forest cover class as the LANDFIRE cover raster on 97.2% of pixels. Agreement 
between the target and imputed data was above 92% for eight of nine cover bins, with the lowest producer’s accu-
racy at 79% for the 95% cover bin (Table 3). This bin had many fewer plots available for imputation (Figs. 5 and 6),  
thus it was more difficult for the random forests algorithm to match the cover values while simultaneously 
matching height and vegetation group (the other two response variables). Indeed, producer’s accuracy tended to 
increase with the number of plots available for imputation in a cover class (Fig. 6). The proportion of the land-
scape falling into each of the nine cover bins was similar across the three data sources (FIA plots, LANDFIRE 
data, and imputed dataset) (Fig. 5). However, the proportions were more similar between the imputed and target 
data than to the FIA plots. Since FIA plot locations are likely representative of the landscape as a whole, this sug-
gests that LANDFIRE may have underestimated the number of pixels in the cover classes with midpoints of 15%, 
55%, 65%, and 95%, and overestimated the number of pixels in the 75% and 85% cover classes (Fig. 5).

Agreement between the imputed height values and the LANDFIRE target data was 99.2%. User’s and pro-
ducer’s accuracies for height were over 94% in four out of five height classes, with producer’s accuracy of 89% in 
the 0–5 m height bin (Table 4). As with cover, accuracy tended to increase with the number of plots available for 
imputation in a bin; however, the producer’s accuracy for the 0–5 m class was lower than that of the 70 m class 
despite having more plots available for imputation (Figs. 7 and 8). The proportion of pixels/plots in each height 
bin was similar across the FIA plots, LANDFIRE data, and imputed dataset (Fig. 7); however, assuming that the 
FIA plots are indicative of proportions on the landscape, LANDFIRE appears to have underestimated the number 

Target

15 25 35 45 55 65 75 85 95 accuracy

Imputed

15 113,259,693 2,637,198 4,108,223 529,979 194,475 63,431 43,103 16,190 4,965 0.937

25 5,017,812 201,658,721 6,422,551 788,100 355,138 131,744 62,121 16,986 4,713 0.940

35 2,524,783 4,130,464 297,997,650 2,590,566 887,885 421,810 143,835 56,191 15,817 0.965

45 565,367 1,312,429 7,681,977 269,346,353 3,154,093 1,437,401 346,507 89,705 18,245 0.949

55 140,426 668,783 1,356,709 2,604,891 276,169,764 2,747,460 742,746 336,838 66,900 0.970

65 214,322 366,572 1,160,443 807,754 2,940,943 291,577,963 1,771,381 671,736 145,536 0.973

75 38,790 130,397 448,613 854,545 1,525,144 1,220,510 709,268,338 1,993,144 730,487 0.990

85 43,800 115,488 663,493 485,575 902,553 573,635 1,144,017 588,746,172 2,918,495 0.989

95 19,730 93,373 217,297 184,525 1,225,748 148,633 386,346 304,505 14,691,240 0.851

accuracy 0.930 0.955 0.931 0.968 0.961 0.977 0.994 0.994 0.790 0.972

Table 3.  Confusion matrix illustrating the number of pixels correctly and incorrectly classified in the various 
cover classes in the target and imputed datasets.
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Fig. 5  Proportion of FIA plots (reference data), LANDFIRE pixels (target data), and imputed pixels falling into 
each of the nine cover classes.
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of pixels in the 0–5 m and 25–50 m bins, and overestimated the number of pixels in the 10–25 m bin. Again, the 
proportions of the landscape in each height bin were more similar between the imputed and LANDFIRE datasets 
than to the FIA plots (Fig. 7).

At-pixel imputed EVG values matched those of the target data 93.0% of the time. For 43 of 76 categories, the 
producer’s accuracy exceeded 90%, and in 51 categories the user’s accuracy exceeded 90% (Online-only Table 1 
and Supplementary Table 1). Of the 76 EVG categories, the lowest user’s accuracy for any given EVG was approx-
imately 52% and the lowest producer’s accuracy was approximately 2% (Supplementary Table 1). In general, the 
proportion of the landscape in each EVG class was similar across the FIA plots, target data, and imputed dataset, 
however there were some exceptions (Fig. 9). Of the 76 EVG categories, 46 had fewer than 500 plots available 
for imputation, while 58 had fewer than 1000 (Fig. 10). Accuracy was generally lower where plot numbers were 
sparse (Fig. 10); however, this did not prevent the overall accuracy from being high.

The imputed disturbance code (no disturbance, fire, or insect/disease) matched the LANDFIRE target dataset 
90.3% of the time. However, accuracy in the disturbed categories was low, with a user’s accuracy of 64% in the fire 
class and 1% in the insect/disease class (Table 5). The low accuracies in the disturbed categories had little effect 
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Fig. 6  Producer’s accuracy by number of plots available for imputation in a cover class.

Target

3 8 18 38 70 accuracy

Imputed

3 126,839,018 491,213 9,242 577 0 0.996

8 10,257,788 334,363,687 1,414,291 72,269 288 0.966

18 4,434,215 1,848,028 2,000,161,513 3,368,066 5,831 0.995

38 471,283 838,750 72,193 353,795,222 175,244 0.996

70 32,855 20,755 1,231 4,892 2,923,530 0.980

accuracy 0.893 0.991 0.999 0.990 0.942 0.992

Table 4.  Confusion matrix illustrating the number of pixels correctly and incorrectly classified in the various 
height classes in the target and imputed datasets.
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Fig. 7  Proportion of FIA plots (reference), LANDFIRE pixels (target), and imputed pixels falling into each of 
the five height classes.
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on the overall accuracy because the number of disturbed pixels is so much lower than the number of undisturbed 
pixels (only 5.6% of pixels were classified as burned and 0.4% as affected by insect/disease). Because the number 
of disturbed plots is also low, it’s difficult for random forests to match the disturbance class along with all the other 
variables, and disturbance wasn’t as important to the algorithm as vegetation group, cover, and height, as these 
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Fig. 8  Producer’s accuracy by number of plots available for imputation in a height class.
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Fig. 9  Proportion of FIA plots (reference), LANDFIRE pixels (target), and imputed pixels falling into each of 
the 76 EVG categories.
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were response variables. Accuracy was strongly affected by the count of plots in each disturbance class (Figs. 11 
and 12), with high accuracies in the no-disturbance class (59,035 plots available for imputation) and low accura-
cies in the fire (2,111 plots) and insect/disease (5,995 plots) classes.

The proportion of the landscape in the various disturbance classes was similar across the FIA plot, target data, 
and imputed data; however, LANDFIRE may have underestimated the number of pixels in the insect/disease 
class, if the FIA plot data can be considered a reliable guide to the proportion of pixels affected (Fig. 11).

In future efforts, accuracy in the disturbance classes might be improved by 1) preferentially collecting more 
plot data in disturbed areas, 2) increasing the accuracy of mapping of insect/disease affected areas, or 3) including 
disturbance as a response variable. However, FIA’s plot locations are set in density, so FIA will not likely undertake 
additional collection. And if disturbance was included as a response variable without increasing the number of 
plots, the accuracy of the other response variables might suffer.

In short, the level of agreement between the target LANDFIRE rasters and the imputed dataset was very high 
(97.2% for cover, 99.2% for height, and 93% for vegetation group), suggesting the random forests methodology had 
a high level of success in identifying FIA plots with similar characteristics to the target data and imputing them at 
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Fig. 10  Producer’s accuracy by number of plots available for imputation in an EVG category.

Target

no disturbance fire insect/disease accuracy

Imputed

no disturbance 2,532,706,942 114,511,377 8,522,868 0.954

fire 17,207,086 30,875,524 191,143 0.640

insect/disease 122,784,053 12,746,499 2,056,489 0.015

accuracy 0.948 0.195 0.191 0.903

Table 5.  Confusion matrix illustrating the number of pixels classified correctly and incorrectly in each 
disturbance class in the target and imputed datasets.
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Fig. 11  Proportion of FIA plots (reference), LANDFIRE pixels (target), and imputed pixels falling into each of 
the three disturbance categories.
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the scale of the continental US. Comparison of the FIA plot characteristics to the LANDFIRE target data identi-
fied a moderate level of accuracy in mapping cover within 10% (48.7%) and height within 5 m (70.2%) on at least 
one pixel within the plot’s radius. These differences could be caused by a number of factors, including: 1) errors in 
LANDFIRE’s mapping, 2) errors in measurement at FIA plot locations, 3) errors in the accuracy of FIA plot loca-
tions, and 4) errors in the estimation of cover and height at FIA plots resulting from the FVS routine (these may 
range from underestimation of approximately 2% where trees are clustered to overestimation of approximately 10% 
where trees are evenly spaced30). This moderate level of accuracy propagated to the imputed dataset (cover = 48.7% 
and height = 70.3%), since the target data values were used as predictor and response variables for each pixel in 
the random forests model. Errors in cover and height were most commonly in the adjacent bin (thus cover esti-
mates were most frequently off by only 10–20%). We found that prediction of tree species had a higher accuracy 
(76.7%) than any of the three response variables. The imputed dataset has a similar proportion of the landscape in 
each cover, height, and vegetation group class as the FIA data (which should be representative of the landscape as 
a whole), suggesting that these variables can be reliably used in predictions at zone, regional, and national scales.

Usage Notes
As noted above, the variables in the random forests algorithm were selected with the intention of optimizing the 
outputs for prediction of risk to carbon resources from wildland fire. The output is also likely quite suitable for 
predictions of biomass and basal area, including biomass removed by forest management projects such as fuel 
treatments to reduce fire hazard. The dataset may work well for such applications as species envelope modelling, 
among others. However, it has not been systematically validated for any of these uses at time of publication. Users 
are advised to assess the dataset for suitability of their project goals before proceeding.

The main output of the project is a map of imputed FIA plot IDs on a 30 × 30m raster grid, the TreeMap 2014. 
The utility of the dataset lies in its ability to be linked to databases that contain the FIA plot characteristics. We 
have provided an accompanying database in both Access and text format that lists inventory year and state for 
each plot, as well as for each tree, its status (live or dead), diameter, height, number of trees per acre conversion 
factor, etc. The raster and tables are available in the US Department of Agriculture Research Data Archive15. 
However, many more plot characteristics can be accessed via the FIA DataMart11, which serves the data by state 
in a variety of formats including HTML, XLS, SQLITE, and CSV. Specifically, to perform the linkage, users can 
leverage either of two columns present in the TreeMap raster at “\Data\national_c2014_tree_list.tif ”: the tree 
list identifier (“tl_id”) field in the raster corresponds to a unique FIA sequence number (“CN”) also given in 
the raster’s attribute table. The “tl_id” and “CN” fields are also present in the accompanying tables at “\Data\
trees_CONUS_5_15_2019.mdb\Tree_table_CONUS” or “\Data\Tree_table_CONUS.txt”. The sequence numbers 
also appear in the tables in the FIA DataMart (note that the sequence number has the attribute name “CN” in FIA’s 
“PLOT” table and “PLT_CN” in all other tables). The sequence number signifies a single visit to a plot; if the same 
plot is revisited it will have a new CN. All plot CNs utilized in this analysis were 100% forested, physically located 
within the boundaries of CONUS, and were obtained by MOU from FIA in December of 2012.

Code availability
Code was written in R and Python for the purposes of this project. The arcpy module was run in the Python 
version that accompanies ArcGIS 10.5.1, which is the Python IDLE 2.7.13.

Code is available at https://github.com/USDAForestService/TreeMap2014_scripts. The code:

1)       prepared the target data rasters (script names: “reclass_Landfire_disturbance_rasters_for_tree_list.py” and 
“write_EVG_remap_files.r”)

2)      performed the random forests imputation, using the R package yaimpute (script name: 
“yai-parallel_v02202019-final-Yes-disturbance_z1.r”)
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Fig. 12  Producer’s accuracy by number of plots available for imputation in the three disturbance classes.
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3)     validated the output grid of imputed plot IDs by comparing it to FIA plots measured in 2014 and  
to the target rasters (script names: “national_validation_plots_Landfire.py” and “national_validation_ 
plots_Landfire_step2.r”)

4)         compared the imputed raster to the target rasters as a measure of imputation accuracy (script name: 
“analyze_national_tree_list_output.r”)
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