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A B S T R A C T

Predicting wildfire disasters presents a major challenge to the field of risk science, especially when fires pro-
pagate long distances through diverse fuel types and complex terrain. A good example is in the western US where
large tracts of public lands routinely experience large fires that spread from remote wildlands into developed
areas and cause structure loss and fatalities. In this paper we provide the first comprehensive assessment of
where public wildlands potentially contribute wildfire exposure to communities in the 11 western US states. We
used simulation modeling to map and characterize the composition of the source landscapes (firesheds) and
recipient communities in terms of fuels, fire behavior and forest management suitability. The information was
used to build a prototype investment prioritization framework that targets highly exposed communities where
forest and fuel management activities are feasible. We found that simulated wildfires ignited on national forests
can potentially affect about half of the communities in the western US (2560 out of 5118), with 90% of exposure
affecting the top 20% of the communities (n= 516). Firesheds within national forests, defined as areas that have
the potential to expose communities to fire, were estimated at 35 million ha (62% of the total national forest
area), and were almost three times larger than the affected community lands. Large contiguous areas of wildfire
transmission were evident on a number of national forests. Only 22% of the fireshed area is forested, fire-
adapted, and lies within land management designations that allow mechanical fuels management. The methods
demonstrate how cross-boundary exposure can be factored into prioritizing federal investments in hazardous
fuels reduction on national forests in concert with community protection measures. The results can also help
scale wildfire governance systems to match the geography of risk from large wildfire events, which augments
existing assessments that do not explicitly identify the source of risk to communities.

1. Introduction

Wildfire losses to developed areas continue to grow globally and are
driven by a number of factors including warming climate (Abatzoglou &
Williams, 2016; Littell, McKenzie, Wan, & Cushman, 2018; McKenzie &
Littell, 2017), expanding wildland urban interface (WUI, Radeloff,
et al., 2018), suppression policies (Calkin, Cohen, Finney, & Thompson,
2014), and increasing fire occurrence from human ignitions (Nagy,
Fusco, Bradley, Abatzoglou, & Balch, 2018). In the western US, the
buildup of forest fuels on public wildlands coupled with regional
droughts (Littell, Peterson, Riley, Liu, & Luce, 2016) and high-wind
events (Abatzoglou, Balch, Bradley, & Kolden, 2018) are catalyzing
plume-driven fires that spread to developed areas, and are capable of
consuming entire housing subdivisions (e.g., 2018 Carr Fire). These fire

events challenge risk governance systems on a global basis owing to the
diversity of fire regimes, fragmented institutional fire policy, and
landowner behavior with respect to managing fire and the fuels they
consume (Fischer et al., 2016; Steelman, 2016). As losses grow, so do
efforts to better understand the WUI problem from both a social and
biophysical perspective, and to develop community mitigation planning
systems to adapt to the increasing incidence of large fires. Most of the
recent research has emphasized in situ WUI characterization and con-
ditions that contribute to loss. For instance, researchers have developed
various schemata to define and map WUI (Lampin-Maillet et al., 2010;
Modugno, Balzter, Cole, & Borrelli, 2016; Radeloff et al., 2005), assess
in situ fire hazard in relation to social vulnerability (Wigtil et al., 2016),
create community typologies (Carroll & Paveglio, 2016), characterize
social diversity (Paveglio et al., 2015), measure recent WUI expansion
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(Radeloff et al., 2018; Strader, 2018), examine the equity of fuel
management investments (Adams & Charnley, 2018), and predict
structure loss (Kramer, Mockrin, Alexandre, Stewart, & Radeloff, 2018).
At the same time, numerous large-scale assessments in the US have
been used to map fire hazard and risk around the WUI (Dillon, Menakis,
& Fay, 2015; WWWRA, 2013) to target investments in hazardous fuel
reduction projects (Butler, Monroe, & McCaffrey, 2015; USDA Forest
Service, 2015). These investments are focused on western US national
forest lands, which account for some 30–50% of the total burned area in
the western US, and result in the treatment of about 1.2 million hec-
tares per year with 81% allocated to protect adjacent developed areas
identified in Community Wildfire Protection Plans (CWPP) (USDA
Forest Service, 2017a). Several studies have examined how these in-
vestments are allocated relative to the geography of the WUI (Adams &
Charnley, 2018; Schoennagel, Nelson, Theobald, Carnwath, &
Chapman, 2009), high fire hazard locations (Vaillant & Reinhardt,
2017), and demography of affected populations (Adams & Charnley,
2018; Palaiologou, Ager, Nielsen-Pincus, Evers, & Day, 2019).

Despite advancements in risk science, assessment methods, and a
myriad of state, federal, and local fire protection activities and pro-
grams (Jakes & Sturtevant, 2013), it is widely recognized that further
improvements in community wildfire protection strategies are needed
to curb escalating losses and make progress towards the goals of the
federal wildland cohesive strategy (USDA-USDI, 2013). In terms of
large scale assessments, more effort has been expended on mapping and
characterizing the WUI than assessing its exposure to wildfire, owing to
the fact that the former is a relatively simple problem compared to the
latter. Initial identification of "at risk" communities published in the
federal register (USDA and USDI, 2001) was based on qualitative ad hoc
assessments. While in situ fire hazard (Dillon et al., 2015) has been
mapped for the US and incorporated into social assessments (Wigtil
et al., 2016), these and other assessments focus on fuel conditions in the
WUI and do not consider how large fires ignited in distant locations
spread to the WUI and shower them with embers that cause widespread
structure ignitions.

Contributing to the problem is the fact that current CWPP programs
(Jakes et al., 2007) allow for arbitrary definitions of community plan-
ning area, rather than defining them based on risk from large fire events
(Healthy Forests Restoration Act). Thus delineations of planning areas
for community protection planning (USDA & USDI, 2001) do not ac-
count for the geography of wildfire risk to communities (Ager, Kline, &
Fischer, 2015). When these assessments are used for prioritizing federal
assistance under the CWPP program (Jakes et al., 2011), the resulting
investments may or may not target the lands that are a primary driver
of WUI risk. Moreover, several studies that evaluated how well federal
hazardous fuels programs address community protection also omitted
the connection between landscape fuels, large fires and risk to the WUI
(Adams & Charnley, 2018; Schoennagel et al., 2009). Clearly, existing
large scale assessments (Dillon et al., 2015; WWWRA, 2013) that focus
on in situ risk need to be revised to explicitely identify the source of
large fires that often ignite in distant wildlands and spread to developed
areas (Haas, Calkin, & Thompson, 2013). In this way, Firewise and
other homeowner mitigation activities implemented as part of CWPP
(Williams et al., 2012) could be better synchronized with landscape fuel
management efforts on the wildlands from which fires originate. Al-
though there have been assessments to prioritize communities based on
risk transmission from surrounding lands, these have been few in
number and small in scale.

In this paper we combine simulation modeling with geospatial
analyses to provide a comprehensive assessment of where public
wildlands in the 11 western US states potentially contribute wildfire
exposure to communities. The goal of this work is to measure the scale
of wildfire risk to communities and describe patterns of geographic
variation in relation to fire exposure metrics. The study uses a spatial
framework that recognizes the multiple scales and processes by which
wildfire risk is transmitted from wildlands to developed areas (Fig. 1).

The study contributes methods and information that can be used at a
range of scales to improve and prioritize community wildfire protection
planning.

2. Methods

2.1. Study area

The study area included the 76 national forests (NF) of the 11
western US states (Fig. 2), and the adjacent WUI as mapped by the
SILVIS project (Radeloff et al., 2005). We excluded the Dakota Prairie
Grasslands, and the Black Hills and Nebraska National Forests because
they were outside our study area (even though they belong to USFS
Regions 1 and 2). National forest land within our study area covers over
56 million ha and contains a diverse array of forest and rangeland
ecosystems. About 36 million ha are fire-adapted forests (LANDFIRE
fire regime groups 1 and 3), 27 million ha are available for treatment
and 30.5 million ha are classified with forested fuel models (Timber-
litter, Timber understory and Slash-blowdown) from 2014 LANDFIRE
data (Rollins, 2009). Lands available for treatment, hereafter manage-
able, exclude protected areas such as wilderness, roadless and nation-
ally designated protected areas (see section 2.4). Fire-adapted forests
include forested areas with fire return intervals< 35 years or 35–200
years and low or mixed severity fire regimes. This group excludes areas
with historical high severity fire, or> 200 year fire return intervals.
The national forest network is bissected by many mountain ranges in-
cluding the Rockies, Sierra Nevada, Cascades, and numerous sub-
ranges, which creates pronounced gradients in vegetation, climate, and
fire regimes.

2.2. Wildfire simulation modeling

Wildfire simulation data from the large-fire simulator, FSim, were
used to quantify current wildfire exposure within and among the na-
tional forests. The simulation methods are reported in detail elsewhere
(Finney, McHugh, Grenfell, Riley, & Short, 2011; Short, Finney, Scott,
Gilbertson-Day, & Grenfell, 2016), and results have been used in several
other studies (Ager, Buonopane, Reger, & Finney, 2013; Thompson,
Calkin, Finney, Ager, & Gilbertson-Day, 2011). In general, FSim simu-
lates weather, fire occurrence, growth and suppression on large land-
scapes over thousands of simulations or fire seasons to estimate average
burn probabilities (BP) and fire size distributions, in order to produce
BP and flame length intensity grids, ignition points, and fire perimeters.
FSim generates daily wildfire scenarios for a large number of wildfire
seasons using relationships between historical Energy Release

Fig. 1. Conceptual framework to organize geographic attributes for assessing
community exposure from wildfire and capacity to respond. Arrows indicate
wildfire ignition and spread into the wildland urban interface (WUI). Zones are
as follows: 1) Community core not exposed to wildfire; 2) WUI predicted to be
exposed to fire; 3) federal fireshed where ignitions are likely to expose com-
munities to fire; and 4) federal land where ignitions are unlikely to generate
community-exposing wildfires.
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Component (ERC; Bradshaw, Deeming, Burgan, & Cohen, 1983) and
historical fire occurrence. Wildfires are simulated with the minimum
travel time (MTT, Finney, 2002) algorithm under weather conditions
derived from time series analysis of historical weather. Weather data
are derived from the network of remote automated weather stations
located throughout the US (Zachariassen, Zeller, Nikolov, &

McClelland, 2003). FSim outputs include the ignition location of each
fire, fire perimeters, and grids of BP and conditional probabilities by
flame length category. The data used consist of 3.5 million ignitions
(262,368 causing structure exposure) simulated inside US Forest Ser-
vice lands, representing between 20,000 and 50,000 fire season re-
plicates depending on the region (see Finney et al., 2011).

Fig. 2. The 11 western US states with the 76 national forests we analyzed for transmission and exposure to the ~5000 communities in the study area.
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2.3. Community exposure

We identified 5118 core communities in the US Census data (US
Census Bureau, 2016), representing 65 million people and 25 million
structures. We attached SILVIS WUI polygons (SILVIS Lab, 2012) to the
core communities (US Census Bureau, 2016) using road networks and
minimum travel time from the community's core to each WUI polygon.
We use the term “community” to describe the combined core commu-
nity defined by the census and the adjacent WUI (Fig. 3). Travel speed
was used to create a cost raster that was input into the Cost Allocation
ArcGIS tool with a maximum distance equal to 45min driving time. We
used the relatively long driving time to capture and organize 98.3% of
the WUI into communities. We removed SILVIS WUI polygons that were
classified as uninhabited, water, were smaller than 0.1 ha or had
structure density less than 2 structures per km2, thus our definition of
WUI includes lower density census blocks than Radeloff et al. (2005)
and includes no thresholds for wildland vegetation. Each community
polygon was characterized in terms of fire hazard and fuel model
composition using wildfire simulation modeling output layers and 2014
LANDFIRE data (Table 1). We combined the area characterized as high
or very high wildfire hazard potential (classes 4 and 5) (Dillon, 2015),

to estimate the percentage of each community with high fire hazard
(henceforth termed fire hazard).

We then intersected simulated fire perimeters with the community
layer to estimate the annual number of structures exposed to wildfire,
creating a set of intersected fire/community polygons. For a single fire f
intersecting a single community c, the structure exposure efc is calcu-
lated as

=
=

e A Dfc
i

N

fc fc
1

where Afc is the area and Dfc the structure density (structures ha−1) of
the intersected polygon, summed over all community polygons that
intersect fire f as shown in Fig. 3. The combined exposure across mul-
tiple fires and thousands of fire seasons for the entire community c
represents the sum of exposures for all fires that intersect that com-
munity. The annualized exposure Ec (structures yr−1) for a given
community c is

=
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where M is the number fires intersecting community c throughout the
entire simulation period, and s is the number of fire seasons or years
simulated. We also estimate the normalized exposure for the entire
community (Ȇc), which is the number of structures affected per year per
hectare of exposed community, as

=E E
A

ˆc
c

c

where annualized community exposure is divided by Āc, the area of the
community exposed to wildfire.

2.4. Characterizing national forests

We partitioned national forests into 680,000 hexcells and attributed
each with the same fire behavior and fuel information variables as
described above for communities (Table 1). Irregular boundaries re-
sulted in variable hexcell sizes from 10 to 135 ha (mean 80 ha). At-
tribute information added to each hexcell included majority wildfire
hazard potential class (Dillon, 2015), fire regime and fuel model (Scott
& Burgan, 2005) from 2014 LANDFIRE databases, annual transmitted
structure exposure (derived as above in equation (1) but for all fires
across all communities) and management status, defined by combining
three datasets. The National Gap Analysis Project, Protected Areas
Database (PAD) was used to set as non-manageable those hexcells with
the majority of their area in codes 1 and 2 (management for con-
servation; which includes wilderness). In addition, roadless areas (2001
rule) (USDA Forest Service, 2017b) and National Designated areas were

Fig. 3. Schematic diagram of the transmission assessment process to measure
community exposure for a single community. Communities are defined using
US Census populated places (US Census Bureau, 2016), including surrounding
wildland urban interface (WUI) (Radeloff et al., 2005) within a 45-min drive
time. Wildfire exposure was calculated using the structure density of those
areas that intersect a given wildfire perimeter. The total exposure for a com-
munity represents the sum of all exposure events. Red dot represents wildfire
ignition location.

Table 1
Attributes and data sources used in analysis of wildfire exposure analysis.

Variable Description Data download Citations

Fuel model (class) Fuel models grouped into grass-shrub (FM100 – FM140), shrub (FM140 -
FM150), forest (FM160 – FM189) and non-burnable (FM90 - FM99)

LANDFIRE (2016) Scott and Burgan
(2005)

Structure exposure (structures
yr−1)

Estimated from intersecting simulated fire perimeters with communities and
deriving the number of affected structures out of the total number of structures,
by the overlap fraction

SILVIS Lab (2012) Ager et al. (2014); Ager
et al. (2018)

Structure exposure density
(structures ha−1 yr−1)

Estimated by dividing structure exposure by the area of community exposure by
wildfires ignited on national forests

SILVIS Lab (2012)

Fire regime (binary) Fire- versus non-fire-adapted forests as defined by fire regime (fire regime groups
1 and 3: fire-adapted; fire regime groups 2, 4 and 5: non-fire-adapted)

LANDFIRE (2013)

Management capability (binary) Managed lands are USGS GAP Status codes 3 and 4, and excluding roadless areas
and designated wilderness

USDA Forest Service (2017b,
2017c); USGS (2016)

Wildfire hazard potential (binary) Lands classified as at high hazard as defined by the ‘very high’ and ‘high’ wildfire
hazard potential classes

Dillon (2015) Dillon et al. (2015)
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excluded from manageable lands (USDA Forest Service, 2017c).
Annual transmitted structure exposure for each hexcell was esti-

mated by creating a continuous smoothed surface of predicted structure
exposure from all FSim ignitions that were predicted to cause some
structure exposure, using empirical Bayesian kriging (EBK) geostatis-
tical interpolation, implemented through the ArcGIS geostatistical
analyst module (ESRI 2018). EBK accounts for the error introduced by
estimating the underlying semivariogram, with accurate predictions of
nonstationary data (i.e., wildfire ignitions). EBK kriging was based on
the estimation of a series of semi-variograms for overlapping subsets of
a specified size (100 points) that capture observed spatial dependence
between points (Berman, Breysse, White, Waugh, & Curriero, 2015; Pilz
& Spöck, 2008; Zimmerman, Pavlik, Ruggles, & Armstrong, 1999). We
applied a log-empirical transformation on the data, and included up to
10 neighbors at a radius of 1.6 km. Then, using the EBK raster layer
(100m cell size), we estimated the maximum exposure value of all cells
that intersected each hexcell, and standardized values so that total
exposure of all fireshed hexcells equaled the total simulated exposure of
all ignitions on NFs (3945 structures yr−1).

2.5. Community fireshed and prioritization

We defined community firesheds as the area on national forests that
is likely to transmit wildfire to communities based on simulation
modeling (Ager et al., 2014). We mapped the linkage between each
national forest hexcell and community polygon based on the simulated
ignition location and perimeter, to enable the characterization of the
landscape conditions of the ignition source for all the affected com-
munity polygons. For each community, we had the unique dataset of
hexcells that were predicted to cause structure exposure. These unique
datasets were used to assess community prioritization by ranking
communities by both structure exposure and structure density and as-
sessing hazard on both the source (Forest Service) and sink (commu-
nity) sides of the transmission problem including the following metrics:
structure exposure or density (sink), percentage of ignition source as
manageable forest (source), percentage of ignition source as fire-
adapted (source), percentage of community with high or very high
wildfire hazard potential (sink) and percentage of ignition source with
high or very high wildfire hazard potential (source).

Fig. 4. Structure exposure of the top 50 commu-
nities in the western US to wildfire ignited on na-
tional forest land by state based on number of
structures exposed and structure density. The top
50 communities for both metrics are indicated by
the dashed red lines. Structure exposure is mea-
sured as the annual predicted structures affected
using simulation outputs. (For interpretation of the
references to colour in this figure legend, the
reader is referred to the Web version of this ar-
ticle.)

Table 2
Wildfire exposure to communities from national forest (NF) land for the 11 western US states.

State Area burned from wildfires ignited on NF land and transmitted to communities Total area burned Structure exposure Structure exposure density

ha yr −1 % of total ha yr −1 % of total n yr−1 % of total n ha−1 yr−1 % of total

California 5031 47.3 40,823 24.4 2390 61.3 0.637 46.8
Montana 1334 12.5 14,903 8.9 255 6.5 0.048 3.6
Idaho 1042 9.8 39,881 23.9 190 4.8 0.047 3.4
Arizona 927 8.7 17,877 10.7 500 12.7 0.364 26.7
Utah 619 5.8 13,490 8.1 200 5.0 0.107 7.9
New Mexico 464 4.4 13,139 7.9 125 3.1 0.087 6.4
Washington 439 4.1 2977 1.8 50 1.2 0.006 0.5
Oregon 284 2.7 10,282 6.2 60 1.3 0.014 1.0
Wyoming 200 1.9 4252 2.5 35 0.8 0.011 0.8
Nevada 156 1.5 7490 4.5 110 2.6 0.030 2.2
Colorado 134 1.3 1984 1.2 30 0.7 0.009 0.7

Total 10,630 100 167,098 100 3945 100 1.36 100
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3. Results

3.1. Community exposure

Structures in 2560 out of 5118 communities were exposed from
wildfires ignited on national forests, with 10,630 ha burned per year
and 3945 structures exposed per year. The majority of the exposed
communities were located in CA (712), followed by UT (262) and NM
(258). Structures exposed to simulated wildfire for the top 50 com-
munities ranged from a low of 17.2 (Boulevard, CA) to a high of 143
structures per year (Murrieta, CA) (Fig. 4). The amount of fire received
also varied by community with a maximum of 262 ha yr−1 (Salmon,
ID). Of the top 50 exposed communities (communities above the dashed
horizontal line, Fig. 4), 80% were located in CA. Half of all area burned
in communities from NF ignitions was located in California, while area
burned in communities in the least exposed five states accounted for
only 11.5% (Table 2).

When exposure was adjusted by the exposed area of each commu-
nity (structures yr−1 ha−1), emphasizing structure density, a different
suite of communities was ranked in the top 50 for exposure (commu-
nities to the right of the dashed vertical line, Fig. 4). Only 15 com-
munities were ranked on both lists (above the dashed horizontal line
and to the right of the vertical dashed line), with three communities in
the top 10 based on both metrics (Crestline, Lake Arrowhead, Fontana),
thus there was not a strong relationship in structure exposure between
raw and area weighted values (Fig. 4). While communities in CA still
had the highest percentage of adjusted exposure (46.8%), communities
in AZ (26.7%), UT (7.9%) and NM (6.4%) also showed high exposed
structure density (Table 2).

In terms of cumulative structure exposure (Fig. 5), 90% of all
structure exposure was received by 23% of the exposed communities
(600) (black curve), while the top 90 communities contained 50% of all
structure exposure in the western US (yet representing only 3.5% of
exposed communities). Across the study area or within an individual
state, community exposure was concentrated in a small proportion of
the communities, however the slope of the curve was much steeper for
CA and AZ (Fig. 5).

Half of all area burned within communities came from seven NFs
(Cleveland, San Bernardino and Angeles in CA; Bitterroot in MT;
Okanogan-Wenatchee in WA; Salmon-Challis in ID and Lolo in MT)
(Fig. 6B), while 30 NFs cumulatively accounted for less than 5% of all
area burned within communities. Half of the structure exposure origi-
nated from three NFs in CA (Cleveland, San Bernardino and Angeles)
(Fig. 6A), while six other NFs caused exposure greater than 100 struc-
tures yr−1, accounting for 19% of total exposure. Structure exposure
and annual area of communities burned were generally correlated;
however, there were NFs that contributed large amounts of total area
burned where fires rarely exposed communities, such as the Salmon-
Challis in ID (13,000 ha yr−1, 1.4% of structures affected), the Gila in
NM (10,000 ha yr−1,0.8% of structures affected), and the Sawtooth in
ID (8100 ha yr−1, 0.6% of structures affected).

The number of communities affected by wildfire ignited on each
national forest and population exposed were weakly correlated and
revealed several outlier NFs in California (Fig. 7). In addition to Cali-
fornia's NFs, Tonto and Coronado (AZ), Uinta-Wasatch-Cache (UT) and
Humboldt-Toiyabe (NV) each had the potential to affect more than a
million people, while 35 NFs each affected less than 100,000 people
and 1.5 million people in total. The number of communities affected by
a single NF ranged from a low of six (Umpqua, OR) to a high of 150 for
Uinta-Wasatch-Cache NF, with a median number of 35 communities.

3.2. Characterization of national forest lands

Simulations revealed that 35 million ha, or 62% of the total NF area,
potentially contributed wildfire to communities, 19 million ha of which
are manageable (14 million ha are both manageable and fire-adapted)
(Fig. 8). This is also reflected in a map of firesheds that delineates areas
where wildfires ignited and caused structure exposure to communities
(Fig. 9). Only 7.6 million ha (14% of the total NF area; 22% of the total
fireshed area) are manageable, fire-adapted and forested, limiting the
area on national forest that can be treated to reduce risk (~700 struc-
tures yr−1, 17.5% of total exposure). One quarter of the total fireshed
was predicted to have very low exposure to communities (9 million ha
with only 1% of total exposure). Approximately 6.5% of the total area

Fig. 5. Cumulative structure exposure from wildfires ignited on US national forests for the 11 western US states predicted from simulation modeling.
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burned by fires ignited inside NFs was transmitted to the community
core and/or WUI polygons (Table 2), with state-level values ranging
from ~1% (CO, NV) to 47% (CA). These numbers are substantially
smaller than we have previously reported (Ager et al., 2014) but are
limited to area burned from fires ignited within national forests that
intersected community polygons (simulated fires not reaching com-
munities were excluded from the analysis). The total amount of fire
generated was 167,100 ha per year (Table 2), most of which burned in
CA (24.4%), ID (23.9%) and AZ (10.7%). However, while structure
exposure was highest in California (Figs. 4 and 6), the fireshed analysis
shows very little (6%) of that exposure can be mitigated by hazardous
fuel treatments (Fig. 8–10). The states with highest exposure mitigation
potential were Washington (47%), Colorado (46%), Montana (38%),
Oregon (30%) and Idaho (20%) (Fig. 10).

3.3. Community ranking

Ranking of communities and assessing the hazard profile on both
sides of the transmission boundary revealed high variability across
communities, especially in terms of structure density (Fig. 11). Eighty

percent of the top 50 communities in terms of raw structure exposure
were in California where management is limited at the ignition source
despite high wildfire hazard potential (38 out of 50 were in southern
California; Fig. S1). Much more variability was seen in terms of the
percentage of area that is fire-adapted. When comparing the number of
communities in the top 50 ranking for structure exposure versus the
area weighted structure exposure density, Arizona had only 8% of the
top 50 communities (versus 36% for structure exposure density), while
California had 80% (versus 56% for structure exposure density). High
variability existed across communities for both source and sink metrics.

4. Discussion

Our work provides the first large-scale characterization of wildfire
exposure from western US national forests to adjacent communities and
WUI. The assessment linked fire behavior, management potential, and
fuels conditions for both the source of fire exposure and the affected
locations. We estimate that in the western US, 12.5 million ha of the
22.4 million ha WUI were exposed to wildfire from about 35 million ha
of national forest lands. These community firesheds represent about

Fig. 6. Wildfire exposure to communities from simulated ignitions on national forests as measured by (A) annual structures exposed, and (B) annual area of
community burned. National forests with<5 structures exposed were removed from the plot. Note order of national forests within state changes based on exposure
metric and maximum value is truncated for outlier forests (exposure value indicated by dot value).
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45% of the national forest lands in the western US, almost three times
that of the exposed wildland urban interface, and ten times larger than
the 2560 community cores assessed. Most national forest wildfire
source areas are fire-adapted, yet less than half are forested. Further,
more than half of these lands have restrictions in place that limit me-
chanical treatments. In total, only 22% of the firesheds on national

forest lands are forested, fire-adapted, and can be managed with me-
chanical treatments under current land management resource plans.

The problem of wildfire exposure to developed areas is manifested
at both landscape and community scales (Finney & Cohen, 2003). We
connected these scales by characterizing exposure in terms of the fre-
quency and intensity of wildfire burning from wildlands to WUI parcels

Fig. 7. Scatterplot of the 76 national forests in the
western US with the estimated number of communities
and population affected from wildfire simulations.
Population is the sum of 2010 census records of all
communities affected by ignitions on each national
forest. Dot size denotes the annual number of structures
affected. Names appear for the national forests with
values of structures affected higher than the mean.

Fig. 8. Cumulative structure exposure from wildfires ignited on western US national forests predicted from simulation modeling. Colored lines are Forest Service
lands by management capacity and fuel model.

A.A. Ager, et al. Applied Geography 111 (2019) 102059

8



and communities. Prior studies have focused on the community scale to
identify factors that explain structure susceptibility (or loss), including
topography, spatial arrangement of structures (intermix versus inter-
face), development patterns, density, building materials, and fuels in
the immediate vicinity (Chas-Amil, Touza, & García-Martínez, 2013;
Collins, Penman, & Price, 2016; Penman, Nicholson, Bradstock, Collins,
& Price, 2015; Price & Bradstock, 2013; Syphard, Brennan, & Keeley,
2017). While prior post-fire studies on structure loss have pointed to
specific contributing factors (e.g., structure location relative to other
structures) (e.g., Alexandre et al., 2016), structure loss in these analyses
was conditional on a fire spreading to the community, which ultimately
might be a more important driver of loss than within-WUI conditions.
Detailed struture loss models need to be integrated into fire transmis-
sion studies to fully assess the relative importance of in situ coumunity
versus landscape factors in prevention of structure loss.

We did not model specialized suppression resources that are de-
ployed in and around communities during wildfire events, nor did we
model long distance ember showers (i.e., firebrands) and structure ig-
nition from approaching fire (Koo, P.J., Weise, & Woycheese, 2010;
Penman et al., 2015). The simulated wildfires burned according to

historical suppression as predicted by energy release component
(Finney et al., 2011) and burned only where there were combustible
wildland fuels as indicated by LANDFIRE data. Thus, in general com-
munity cores (US Census Bureau, 2016) and high density WUI did not
burn in our modeling, whereas these areas can be and often are exposed
from ember showers that ignite structures and initiate structure-to-
structure events (e.g., 2014 Carlton Complex fire, WA; 2018 Carr Fire,
CA). Ember showers in particular are a major factor driving WUI losses
and with recent improvements to the FSim wildfire model it will be
possible in the future to model ember production and transport into
WUI parcels. While empirical models (e.g., Syphard, et al., 2017) could
be coupled with our fire exposure outputs to predict structure level loss
and damage, we currently lack the required structure-level input data at
large scales, although recent machine-learning techniques show pro-
mise to acquire detailed structure information (Microsoft, 2013).

Despite these limitations, the outputs from this work have useful
application to prioritize federal, state, and local investments into
community wildfire protection programs based on the level of ex-
posure, source, and potential for forest management activities. The
sheer number of communities exposed to wildfires from national forests

Fig. 9. Firesheds in the western US delineating national forest areas where ignitions have the potential to cause structure exposure to nearby communities, as
estimated by empirical Bayesian kriging geostatistical interpolation on all simulated ignitions that reached community polygons. The parts of the fireshed that are
manageable, fire-adapted and with forested fuel models are highlighted with blue. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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makes a community-by-community approach to investment in fireshed
fuel management programs on national forests difficult. Our results
show how relatively few hotspots account for the majority of the ex-
posure to multiple communities (Fig. 4), suggesting substantial effi-
ciencies can be gained by focusing investments in these areas, especially
when compared to investments to address widespread problems iden-
tified in other agency assessments of overall wildfire hazard and ter-
restrial restoration (Cleland et al., 2017; Dillon et al., 2015). Scaling up
wildfire planning boundaries to encompass the wildlands that poten-
tially expose communities to large “surprise” fires will reveal connec-
tions among communities in term of common sources of exposure, and
the potential to create multi-community planning areas that are suffi-
cient in scale to consider fuel management that includes prescribed and
natural fire.

Definitions of communities-at-risk to wildfire are increasingly
blurred as the WUI expands to create continuous intermix between
previously distinct communities. Recent assessments show over 40% of
structures threatened by wildfire are not being included in current
definitions of WUI or identified within a community (Kramer et al.,
2018). Our geospatial methods organized close to 1.5 million WUI
parcels (98.3%) into distinct communities that can be collectively re-
cognized as discrete units in risk assessment and investment prior-
itization. Our definition of communities was an aggregate of geographic
place names (US Census Bureau, 2016) and the surrounding WUI par-
cels (Radeloff et al., 2005) as defined by the minimum travel time
process using a 45min drive time. The bulk of the WUI (> 80%) was
within 15min, and the longer driving time was used as a means to
assign remaining WUI to particular communities. The methods provide
a more transparent framework to understand the geography of WUI
wildfire risk and can potentially improve federal funding systems that
currently allocate assistance to communities that are frequently based
on fixed boundaries (Jakes et al., 2011) that exclude lands that are the
source of risk. For example, comparing fireshed maps surrounding a
typical at risk community Ager et al. (2015; Fig. 3) show that CWPP
boundaries based on ownership and administrative borders (Jakes
et al., 2011) are substantially smaller than the spatial scale of wildfire
risk.

The global scale of the wildfire WUI problem (Buxton, Haynes,
Mercer, & Butt, 2011; Lampin-Maillet et al., 2010; Modugno et al.,
2016; van Wilgen, Forsyth, & Prins, 2012) and the potential for future
growth (Gude, Rasker, & Van den Noort, 2008; Radeloff et al., 2018;

Theobald & Romme, 2007) underscores the need for expanding and
improving existing planning systems and wildfire risk governance
(Palaiologou, Ager, Nielsen-Pincus, Evers, & Kalabokidis, 2018). The
rapid increase in housing units and developed land area in the western
US has resulted in a 1150% increase in the total number of exposed
structures and 256% increase in exposed developed land area between
1940 and 2010 (Strader, 2018). At the same time, fuels buildup,
drought and extreme weather (Abatzoglou, Kolden, Williams, Lutz, &
Smith, 2017) have substantially increased the size of community fire-
sheds. In other words, the substantial growth in area burned alone
would translate into larger WUI losses even without the WUI expansion
reported by Radeloff et al. (2018) and Strader (2018). Moreover, WUI
expansion leads to cascading effects on WUI fire exposure since it in-
creases both the probability of ignitions from human activities (Nagy
et al., 2018) and the potential loss of value.

Communities with high wildfire connectivity and large firesheds
have a higher potential for scale mismatches in community planning,
stemming from poor perception of risk transmission (Ager et al., 2015;
Fleming, McCartha, & Steelman, 2015; Ivery, 2008). Reducing scale
mismatches in the CWPP process can be facilitated by bridging linkages
across organizations within collaborative planning groups (Abrams,
Nielsen-Pincus, Paveglio, & Moseley, 2016; Brummel, Nelson, Souter,
Jakes, & Williams, 2010; Hamilton, Fischer, & Ager, 2019; Steelman,
2008) that share risk. As reported by Steelman (2016) current wildfire
risk governance is highly fragmented along institutional, jurisdictional,
and other boundaries, and poorly designed to respond specifically to
transboundary wildfire risk. Our analytical framework provides several
improvements over various ad hoc methods to define spatial boundaries
around the WUI as part of assessing social factors, fire hazard, and the
relevance of mitigation activities (Adams & Charnley, 2018;
Schoennagel et al., 2009; Wigtil et al., 2016).

Future characterization of community exposure coupled with fire-
shed assessments can contribute fireshed typologies where populations
of communities can be organized based on amount of exposure, fire
intensity, fire likelihood, contributing land tenures, and fuel types
(Evers, Ager, Nielsen-Pincus, Palaiologou, & Bunzel, 2019). Prior ar-
chetype discussions either focused exclusively on social (Carroll &
Paveglio, 2016) or biophysical (Lampin-Maillet et al., 2010) variables.
For instance Galiana-Martin, Herrero, and Solana (2011) built a WUI
typology for fire prone areas in Europe but it lacked consideration of
the scale of exposure to communities. Archetypes can be designed based

Fig. 10. Structure exposure from wildfires ignited on national forest land based on management capacity of the ignition source by state.
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on socioeconomic factors (Carroll & Paveglio, 2016; Paveglio et al.,
2015) combined with land ownership patterns, capacity to manage
fuels, and public versus private sources of risk, and diversity of land
tenures.

Our analysis was specifically motivated by the spatial patterns of
WUI and national forest lands in the western US which are character-
ized by large tracts of public lands surrounded by interfaces of private
developed lands and communities (Fig. 1). Our methods are applicable
in other fire-prone regions such as Mediterranean areas, with a high
incidence of wildfire transmission between wildlands and communities,
and with fragmented risk governance (Alcasena, Salis, Ager, Castell, &
Vega-Garcia, 2017; Palaiologou et al., 2018). Lacking a complete un-
derstanding of the scale and geography of risk will hinder risk abate-
ment programs that address the changing geography of risk.

Transboundary wildfire exposure has been examined in previous

studies in the western US (Ager et al., 2014; Ager et al., 2018; Haas,
Calkin, & Thompson, 2015; Scott, Thompson, & Gilbertson-Day, 2016)
and elsewhere (Alcasena et al., 2017; Argañaraz et al., 2017;
Palaiologou et al., 2018) but other prior studies are limited in geo-
graphic scope, and/or omitted characterization of conditions of both
the source and affected area. Existing US federal and state risk assess-
ment frameworks do not assess fire exchange among different land-
owners and jurisdictions (e.g., Dillon, 2015; Scott, Thompson, & Calkin,
2013; WWWRA, 2013) but rather conform to the two-dimensional de-
finition of risk (probability and consequences) compared to the three
dimensions proposed by Gardoni and Murphy (2014) that also consider
the source of the risk. As pointed out here and elsewhere (van Asselt &
Renn, 2011), two dimensional assessments of risk fail to reveal the
process by which risk is created or sustained, thereby compromising
strategies to reduce it.
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