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ABSTRACT

Wildland firemanagers in theUnited States currently utilize the gridded forecasts from theNationalDigital

Forecast Database (NDFD) to make fire behavior predictions across complex landscapes during large

wildfires. However, little is known about the NDFDs performance in remote locations with complex to-

pography for weather variables important for fire behavior prediction, including air temperature, relative

humidity, and wind speed. In this study NDFD forecasts for calendar year 2015 were evaluated in fire-prone

locations across the conterminous United States during periods with the potential for active fire spread using

the model performance statistics of root-mean-square error (RMSE), mean fractional bias (MFB), and mean

bias error (MBE). Results indicated that NDFD forecasts of air temperature and relative humidity performed

well with RMSEs of about 28C and 10%–11%, respectively. However, wind speed was increasingly under-

predicted when observed wind speeds exceeded about 4m s21, with MFB and MBE values of

approximately215% and20.5m s21, respectively. The importance of accurate wind speed forecasts in terms

of fire behavior prediction was confirmed, and the forecast accuracies needed to achieve ‘‘good’’ surface head

fire rate-of-spread predictions were estimated as 620%–30% of the observed wind speed. Weather station

location, the specific forecast office, and terrain complexity had the largest impacts on wind speed forecast

error, although the relatively low variance explained by the model (;37%) suggests that other variables are

likely to be important. Based on these results it is suggested that wildland fire managers should use caution

when utilizing the NDFD wind speed forecasts if high wind speed events are anticipated.

1. Introduction

The National Digital Forecast Database (NDFD) is a

seamless mosaic of gridded forecasts produced by the

National Weather Service (NWS) for public use and na-

tional preparedness (Glahn andRuth 2003). Local forecasts

of sensible weather variables are compiled at eachWeather

Forecast Office (WFO) based on numerical weather pre-

diction (NWP) models, observations, and forecaster expe-

rience; the forecasts are then stitched together at the

national level to produce the NDFD. Wildland fire man-

agers rely on the NDFD to provide accurate and timely

forecasts forweather variables that are known to affect both

short- and long-term fire behavior and fire danger including

air temperature, relative humidity, and wind speed and

direction (Jolly 2009; Burgan et al. 1997). In particular,

decision-makers on large wildland fires utilize the NDFD

forecasts to aid in fire spread projections that guide strategic

decisions and inform tactical operations, which ultimately

affect private and public resources (Calkin et al. 2011).

Wildland fire behavior is primarily influenced by the local

fire environment, which includes the fuel, weather, and to-

pography in the area adjacent to the fire (Countryman

1966). Fuel and topography are usually considered static on

the time scales relevant for fire behavior prediction but

weather is both highly variable and dynamic (Barrows

1951). Several weather variables at small and large scales

can affect the dynamics of fire behavior, but near-surface air

temperature and relative humidity, through its effects on

dead-fuel moisture, and wind speed and direction typically

have the largest impacts on fire rate of spread and intensity

(Cheney et al. 1993; Rothermel 1972). For example, fuelCorresponding author: Wesley G. Page, wesleygpage@fs.fed.us
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moisture tends to dampen fire spread as a result of the high

specific heat of water (Anderson 1969; Byram et al. 1952),

and the local wind field (Liu et al. 2015a; Sanderlin and

Sunderson 1975) enhances forward fire spread and intensity

by increasing both the rate of combustion and by directing

hot combustionproducts towardunburned fuels (Catchpole

et al. 1998; Albini 1982).

Near-surface wind speed and direction are affected by

terrain (Wakes et al. 2010) and vegetation (Linn et al.

2013) through mechanisms such as channeling or shelter-

ing. Local and large-scale variations in terrain shape, ori-

entation, and complexity can result in wind flows through

valleys that can override and/or enhance synoptic winds

(Weber and Kaufmann 1998). Likewise, vegetation type

and size can alter the magnitude of the wind flow near the

surface as a result of the effects of bulk drag from crown

foliage (Albini and Baughman 1979). Wildland fires often

occur in rugged terrain across a variety of vegetation types,

where near-surface wind, temperature, and moisture vary

substantially over space and time. Wagenbrenner et al.

(2016) reported that operational NWP models with hori-

zontal grid sizes larger than 1km are too coarse to predict

the variability in near-surface winds exhibited in complex

terrain. The finest NDFD grid currently available has a

horizontal resolution of 2.5km and, thus, would not be

expected to completely capture the range of variability

in near-surface weather in complex terrain. Higher-

resolution modeling in complex terrain may improve

predictions in some cases, but traditional NWP modeling

(e.g., with WRF), upon which the NDFD is at least par-

tially based, is limited to about 1-km horizontal grid reso-

lution because of limitations with discretization schemes

over steep slopes (e.g., Lundquist et al. 2010) and the

planetary boundary layer schemes used for turbulence

closure (Wyngaard 2004).

Previous verification studies of the NDFD have

shown that it generally produces accurate forecasts of air

temperature and precipitation for a variety of lead times

(Huntemann et al. 2015; Myrick and Horel 2006;

Dallavalle and Dagostaro 2004). However, the NDFD’s

suitability for wildland fire applications has not been

directly assessed. The routine verification procedures

currently in use for the NDFD (available online at http://

www.mdl.nws.noaa.gov/;verification/ndfd/) tend to be

weighted toward observations near urban centers (e.g.,

Ruth et al. 2009), as opposed to remote regions of complex

terrain where wildfires often occur. Additionally, the av-

eraging times used to compute model error statistics

(monthly) are large compared to time scales important for

wildland fire [from minutes to hours; e.g., Dagostaro et al.

(2004)]. Large averaging periods effectively smooth out

errors during rare, extreme events that, arguably, are the

most critical in terms of wildland fire behavior.

Despite the lack of NDFD evaluation in fire-prone

regions, it is used to support wildland fire decision-

making. The Wildland Fire Decision Support System

(WFDSS; Noonan-Wright et al. 2011) is the suggested

decision support tool for largewildland fires in theUnited

States (NWCG2009).WFDSS utilizes NDFD grids of air

temperature, relative humidity (RH), precipitation, cloud

cover, wind speed, and wind direction to aid in short- and

near-term fire behavior predictions (i.e., 1–7 days). The

forecast grids are used in conjunction with a number of

fire behavior models to estimate rate of spread, spread

direction, and intensity across diverse assemblages of

topography and fuels. NWS spot weather forecasts are

also requested by fire managers when time allows. These

spot weather forecasts are based, at least in part, on the

NDFD, but are typically expected to be more accurate

than raw NDFD predictions since forecaster expert

knowledge of the local and regional terrain and meteo-

rological conditions can be taken into account. However,

the accuracy of spot weather forecasts is not well known

and while requests for spot weather forecasts are en-

couraged, time constraints do not always allow for them.

This work provides an evaluation of the NDFD for

regions in the conterminous United States (CONUS)

susceptible to wildland fire and quantifies the associated

uncertainty in predicted fire behavior. The specific ob-

jectives were to 1) quantify the error in forecasted

weather variables (air temperature, relative humidity,

and wind speed) used for predicting surface head fire

rate of spread, 2) estimate and rank the importance of

NDFD forecast error for individual weather elements

on surface head fire rate-of-spread error, 3) estimate the

wind speed forecast accuracy needed to achieve ‘‘good’’

surface head fire rate-of-spread predictions, and 4) de-

termine the geographic, meteorological, and human

factors that have the greatest influence on NDFD wind

speed forecast error.

2. Data and methods

a. Overview

Observed weather from surface weather stations

across the CONUS and hourly NDFD forecasts from

each observation station location for calendar year 2015

were compiled and merged with the relevant fire envi-

ronment variables required to make fire behavior pre-

dictions (Table 1). These data were used as inputs into

a semiempirical fire behavior model developed by

Rothermel (1972) and known as the Rothermel model,

which is applied throughout the United States for wild-

land fire management (Andrews 2014). Potential fire

behavior was predicted using both the observed and
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forecasted data and analyzed to determine fire behavior

model sensitivity to forecast error (forecast2 observed) for

the relevant weather variables. Based on those results, the

forecast accuracies needed to achieve good rate-of-spread

predictions were estimated. Additionally, the impact of

several geographic, meteorological, and human factors on

NDFD forecast error were assessed for the variable that

had the largest impact on predicted fire behavior.

b. Observed data

Hourly weather observations from across the CONUS

were obtained from available Remote Automated

Weather Stations (RAWS; available online at http://

www.raws.dri.edu) and Automated Surface Observing

System (ASOS) weather stations (available online at

https://mesonet.agron.iastate.edu/request/download.

phtml) for calendar year 2015. The weather station

variables analyzed were air temperature, RH, 6-m (20 ft)

wind speed, precipitation, cloud cover, and solar radia-

tion. Note that in keeping with standard fire weather

terminology we will refer to the 6-m wind speed as the

20-ft wind speed throughout the rest of the paper. Station

transmit times (UTC) were rounded to the nearest hour

and units were converted to SI units. Wind speeds from

ASOS stations (10-m height) were converted to 20-ft

height assuming a logarithmic wind profile, neutral at-

mospheric stability, and roughness lengths of 0.01, 0.43,

and 1.0m for grass, brush, and timber fuel types, re-

spectively (Campbell and Norman 1998). Fuel type was

assigned based on each station’s fuel model (see section

2d) following Scott and Burgan (2005). Solar radiation

values for ASOS stations were estimated using the Solar

Position and Intensity (SOLPOS) algorithm (National

Renewable Energy Laboratory 2000) with corrections for

cloud cover following the procedures used to estimate the

state of the weather in the Weather Information Man-

agement System (NWCG 2003).

Partial or incomplete hourly weather observations

were removed, and quality control following CEFA

(2007) was undertaken with one exception; precipitation

was allowed to exceed 51mm in any single hour but was

constrained to the all-time record for a 24-h period for the

state in which the station was located. Additionally, ob-

servations were removed if the hourly change in air

temperature exceeded 308C. The climate extremes used

to identify individual state thresholds for data removal for

air temperature, RH, wind speed, and precipitation were

obtained online [National Centers for Environmental

Information (NCEI); available online at https://www.

ncdc.noaa.gov/extremes/scec/records]. The quality con-

trol procedures resulted in the removal of approximately

5% and 20% of the ASOS and RAWS data, respectively.

c. Forecast data

The archived NDFD forecasts that were issued every

hour during calendar year 2015 were obtained online

(NCEI; available online at https://www.ncdc.noaa.gov/

data-access/model-data/model-datasets/national-digital-forecast-

database-ndfd). NDFD forecasts are available out to 168h and

can be updated at the discretion of the WFO. Since there

can bemultiple forecasts valid for a given hour, in this work

we only considered forecasts with a 1-h lead time (i.e., the

first time step in the forecast). Since forecast skill typically

decreases with forecast lead time, the 1-h lead time was

chosen to provide a best-case assessment of the NDFD.

The forecasted air temperature, RH, cloud cover, pre-

cipitation, and wind speed were extracted from the grid

point nearest to each station’s location and converted to SI

units. The 10-mwind speedwas transformed to a 20-ft wind

speed assuming a logarithmic profile, neutral atmospheric

stability, and a roughness length corresponding to the fuel

type at the station location. Solar radiation was calculated

for each hour using SOLPOS with corrections for cloud

cover obtained from the NDFD forecast grids.

The 6-h quantitative precipitation forecastwas converted

to an hourly precipitation forecast by dividing the total

forecast amount into equal proportions for each hour

within the forecast period. Although it is unlikely that

TABLE 1. Environmental variables needed to run Rothermel’s (1972) semiempirical fire behavior model.

Input variable Source Description

Fuel model LANDFIRE Fuel model (Scott and Burgan 2005) assigned to the grid cell where the

weather station was located (30-m resolution)

1-, 10-, and 100-h dead-fuel

moisture (% oven-dry weight)

Data Estimated using Nelson’s (2000) dead-fuel moisture model based on

air temperature, RH, solar radiation, and precipitation

Midflame wind speed (m s21) Data Calculated using 20-ft wind speed, vegetation sheltering, and equations

from Finney (2004) and Andrews (2012)

Slope (8) LANDFIRE Slope assigned to the grid cell where the station was located

(30-m resolution)

Live fuel moisture (herbaceous and woody)

(% oven-dry weight)

Constant Herbaceous fuel moisture set to 30% and live woody fuel moisture set to

60%; note that not all fuel models required these inputs
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precipitation would be evenly distributed over the 6-h time

frame, this simplification is expected to haveminimal effect

on the results on average. Precipitation events that occur

later in the 6-h window will have little impact as the time

available for drying after the event is the same, but pre-

cipitation events that occur early in the 6-h window may

result in higher than expected dead-fuel moisture levels,

and thus lower fire behavior, as there would be less time

available for drying and dead-fuel moisture to decrease

after the event. As there is no basis to expect precipitation

events to happen early or later in the 6-h window, the net

effect is likely negligible.

d. Fuel and topography

Additional fuel and topographic information needed

to estimate dead-fuel moisture and run Rothermel’s

model were obtained from the LANDFIRE project (LF

1.3.0; Rollins 2009). Specifically, the aspect, slope, ele-

vation, fire behavior fuel model (Scott and Burgan

2005), canopy height, and canopy cover were extracted

from the grid cell in which each station was located.

Those stations that were located on a nonburnable fuel

model were removed from the analysis. Additionally,

the fuel models extracted at each station location were

aggregated into two fuel type categories, timber (timber

understory, timber litter, and slash blowdown) and

nontimber (grass, grass–shrub, and shrub) to assess the

sensitivity of predicted fire behavior in horizontal versus

vertically oriented fuel beds to weather forecast error.

Dead-fuel moistures for the 1-, 10-, and 100-h fuel size

classes (Fosberg 1970) were estimated using an adap-

tation of the Nelson (2000) dead-fuel moisture model,

which computes a fuel moisture content (% oven-dry

weight) given inputs of air temperature, RH, solar

TABLE 2. List of explanatory variables used in the analysis, their sources, and a brief description of their derivations.

Variable Source Description

Weather

Air temp (8C) Data Forecast error (predicted 2 observed) in hourly observations

RH (%) Data Forecast error (predicted 2 observed) in hourly observations, includes lagged

error up to 5 h and the sum of the error over that time period

Wind speed (m s21) Data Forecast error (predicted 2 observed) in hourly observations; percent error

[(predicted 2 observed)/observed] 3 100 was also calculated.

Wind type (four levels) Data Type of observed wind (m s21): low (0–2), moderate (2–6), high (6–12), and very

high (.12)

Topography

Elevation (m) 30-m DEM Elevation of the grid cell where the station was located

Aspect (0–2) 30-m DEM Aspect at the station location, transformed to linear scale following Beers et al.

(1966)

Slope (8) 30-m DEM Slope of the grid cell where the station was located

Elevation range (m) GIS Difference between highest and lowest elevation within a 2.5 km3 2.5 km square

centered on the station location

Elevation std dev (m) GIS Standard deviation of elevation within a 2.5 km3 2.5 km square centered on the

station location

Landform (1–10) GIS Classified landform type for the grid cell where the station was located, derived

from the topographic position index; categories are 1) canyons, 2) midslope

drainages, 3) upland drainages, 4) U-shaped valleys, 5) plains, 6) open slopes,

7) upper slopes, 8) local ridges, 9) midslope ridges, and 10) mountaintops

Fuel

Canopy cover (%) LANDFIRE Percent cover of a tree canopy in a stand

Canopy height (m) LANDFIRE Avg height of the top of the canopy for a stand

Fuel type (timber vs nontimber) LANDFIRE Fire behavior fuel models aggregated by type: timber (timber understory, timber

litter, and slash blowdown) and nontimber (grass, grass–shrub, and shrub)

Miscellaneous

Station type (ASOS vs RAWS) Data Type of weather station

Distance to grid point (m) GIS Distance of weather station to nearest NDFD grid point

Elevation difference (m) GIS Difference (NDFD 2 station) in elevation between nearest NDFD grid point

and weather station

Distance to coast (km) GIS Distance of weather station to nearest coastline

Distance to city (km) GIS Distance of weather station to nearest city with population . 50 000

WFO (116 levels) GIS NWS WFO where weather station was located

GACC (9 levels) GIS GACC where the weather station was located

Month (1–12) Data Month of observation

Hour (0–23) Data Hour (local) of observation
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radiation, and cumulative rainfall. The dead-fuel mois-

ture model is a bookkeeping-type model (Viney 1991)

that estimates values with partial dependence on pre-

vious predictions. To accommodate this, the relevant

weather data were organized by station, sorted by date

and time, and processed with an initial starting fuel

temperature of 208C and 5% moisture content. The

times required for dead-fuel moisture contents to sta-

bilize to the environmental conditions vary by size

class but are on the order of from hours to days for the

smallest dead-fuel size classes that drive fire behavior

(Rothermel 1983). Thus, the impact of the starting

moisture contents on predicted fire behavior is expected

to be minimal, particularly for those stations located in

the northern tier of the United States because we ex-

cluded observations prior to 1 April (see section 2g).

Live herbaceous and woody fuel moisture content levels

for all observations were set to 30% and 60%, re-

spectively, as these values represent typical fire season

conditions when herbaceous fuels have cured and live

woody material is entering dormancy (Rothermel 1983;

Scott and Burgan 2005).

e. Fire behavior

The fuel and topographic information, combined with

an estimate of midflame wind speed, were used to cal-

culate the potential fire behavior for each set of hourly

observations (observed and forecast). Midflame wind

speed was estimated from the observed and forecasted

20-ft wind speed following Finney (2004) and Andrews

(2012), with canopy cover less than 5% classified as

unsheltered. The surface fire rate of spread in the

heading direction only (i.e., parallel to slope and wind)

was extracted from the fire behavior outputs and used to

conduct the analysis. The surface fire rate of spread

describes the speed of the flame front in surface fuels

that are typically within about 1.8m of the ground

(Rothermel 1983). This includes grasses, shrubs, and

timber litter but not the crown fuels associated with a

timbered overstory. Potential crown fire behavior was

FIG. 1. Locations of RAWS and ASOS weather stations used in the analysis by the GACC.
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excluded from the current analysis in order to avoid

confounding the influence of the weather variables on

two different fire behavior models. Additionally, the rate

of spread was the primary focus of the current evaluation

because it is the fire behavior characteristic that is most

directly correlated with near-surface weather and is an

important variable for wildland fire managers.

f. Explanatory variables

The effect of several explanatory variables (including

the weather, fuel, and topographic variables already

described) on forecast error was investigated (Table 2).

A 30-m digital elevation model (DEM) for the CONUS

was used to determine the landform (10 levels) for each

station based on the topographic position index (Jenness

2006). Terrain complexity was characterized using the

elevation range and the standard deviation of the ele-

vation calculated within a 2.5 km 3 2.5 km window

centered on each station location (Santos-Alamillos

et al. 2013). Aspect was transformed to a linear range

between 0 and 2 following Beers et al. (1966), and dis-

tances to the coast and nearest NDFD grid point were

calculated within a geographical information system.

The distance between each weather station and the

nearest city with a population greater than 50 000 was

also determined based on the 2010 U.S. Census (avail-

able online at https://www.census.gov/geo/maps-data/

data/tiger.html). The difference in elevation between

the nearest NDFD grid point and the weather station

was also included as a potential explanatory variable.

Additional explanatory variables were station type

(ASOS vs RAWS), month (1–12), and hour (0–23),

where hour was transformed from UTC to local time

based on station location. The Weather Forecast Office

(116 levels) and the Geographic Area Coordination

Center (GACC; 9 levels) that each station was located

within were included to account for differences among

forecast methods and regional differences in fire weather.

To incorporate the effect of high wind speed events on

forecast error, the observed wind speed at each hour was

classified into four categories (ms21); low (0–2), moder-

ate (2–6), high (6–12), and very high (.12).

g. Analysis

All variables were merged into a database consisting

of observed and forecasted weather, topography, fuel,

and resulting fire behavior for each date and time

present in the observed dataset, (i.e., forecast data were

removed where observed values were missing), which

was used to calculate various error statistics. Forecast

error for individual hourly observations was assessed

using raw error (predicted 2 observed) and for all ob-

servations using root-mean-square error (RMSE) and

mean bias error (MBE) following Willmott (1982),

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�(ŷ

i
2 y

i
)2

n

s
and (1)

MBE5
�(ŷ

i
2 y

i
)

n
, (2)

as well as mean fractional bias (MFB) following Boylan

and Russell (2006),

MFB5
1

n
� (ŷ

i
2 y

i
)�

ŷ
i
1 y

i

2

� 3 100, (3)

TABLE 3. Overall NDFD performance for several weather elements, including surface head fire rate of spread and dead-fuel moisture

content, according to the following model performance statistics: RMSE, MFB, and MBE. Results are reported for the full dataset

(all data) and for the data where the observed wind speed was $4m s21.

Variable Observed (mean 6 std dev) Forecasted (mean 6 std dev) RMSE MFB (%) MBE

All data

Air temp (8C) 19.7 6 8.5 19.4 6 8.6 2.2 25.0 20.30

RH (%) 41.4 6 19.2 44.2 6 19.2 10.7 7.5 2.7

20-ft wind speed (m s21) 3.12 6 2.11 3.63 6 2.03 1.91 23.2 0.51

1-h fuel moisture (%) 10.1 6 4.3 16.3 6 16.1 16.0 22.0 6.2

10-h fuel moisture (%) 10.1 6 4.5 13.0 6 9.1 7.6 16.2 2.9

100-h fuel moisture (%) 9.1 6 5.3 11.0 6 8.3 7.0 12.1 1.9

Rate of spread (m s21) 0.071 6 0.1 0.066 6 10.0 0.081 232.0 20.005

Observed wind $ 4m s21

Air temp (8C) 20.4 6 8.4 20.2 6 8.6 2.1 23.5 20.19

RH (%) 39.0 6 18.0 41.4 6 18.3 9.8 6.9 2.4

20-ft wind speed (m s21) 5.73 6 1.75 5.19 6 2.23 2.11 214.8 20.54

1-h fuel moisture (%) 9.4 6 3.7 16.3 6 16.6 16.9 25.1 6.9

10-h fuel moisture (%) 9.7 6 4.0 13.2 6 9.1 8.0 20.8 3.4

100-h fuel moisture (%) 9.1 6 5.4 10.8 6 8.1 7.1 11.1 1.7

Rate of spread (m s21) 0.141 6 0.150 0.101 6 0.140 0.117 261.5 20.04
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where ŷi is the predicted value for the ith observation, yi is

the observed value for the ith observation, and n is the

total number of observations. Additionally, hourly rate of

spread was calculated as the percent error and as a mod-

ified z score (raw error/standard deviation of error by

station) to account for differences in fuel-type sensitivity

to wind speed. Wind speed error was also calculated on a

percent error basis to aid in the determination of the wind

speed accuracies needed for good rate-of-spread pre-

dictions. To incorporate the potential influence of RH

error on head fire rate of spread, at each time step seven

separate variables were calculated; the raw error was re-

corded for each of the previous 5h, including the current

hour and the sum of the error over the same time period.

The rate-of-spread predictions were also classified as

good or bad following the recommendations of Cruz and

Alexander (2013). Specifically, based on an analysis of

several fire spreadmodel evaluationdatasets for seven fuel-

type groups, they determined that635% error of head fire

rate of spread was a reasonable standard for fire behavior

model adequacy (Cruz and Alexander 2013). Rate-of-

spread predictions that were within 635% error were

classified as good while all others were classified as bad.

Random forests (Breiman 2001) as implemented in the

randomForestSRC package (Ishwaran andKogalur 2016)

in the R statistical package, version 3.3.2 (R Core Team

2015), were used for both classification and regression.

Random forests are a nonparametric ensemble learning

approach to data analysis that does not have distributional

assumptions, can utilize different types of data (e.g.,

continuous, ordinal) simultaneously, is robust to outliers,

can incorporate complex interactions in high-dimensional

data, and performs well with spatial data (Evans et al.

2011). The dependent variables were either regressed or

classified against the explanatory variables and outputs of

variable importance and partial dependence were evalu-

ated. Specifically, to address objective 2, rate-of-spread

error (modified z score) was regressed against forecast

error in the weather station variables to assess the relative

importance of individual sensible weather variables on

rate-of-spread error. To address objective 3, the classified

rate-of-spread predictions were regressed against forecast

error in the sensible weather variables to evaluate the de-

pendence of good and bad rate-of-spread predictions on

wind speed forecast error. Objective 4 was addressed by

regressing thewind speed forecast error, for all the data and

just the caseswhere the observedwind speedwas$ 4ms21,

against the full set of explanatory variables listed in Table 2.

The analysis focused on periods of active fire spread;

therefore, only those hours where head fire rate

of spread based on the observed data was$0.0056ms21

[i.e., 1 ch h21; a chain (ch) is a standard unit of length used

in wildland fire; 1 ch5 66 ft] were analyzed. This spread-

rate threshold allows for the evaluation to focus on con-

ditions under which wildfires typically occur, that is,

conditions that promote active fire behavior that requires

fire suppression. Additionally, the hourly observations

were limited to periods considered to be during the po-

tential fire season to minimize bias due to snow cover.

Specifically, those stations located in the northern

GACCs (Fig. 1) (i.e., Northwest, North Ops, Northern

Rockies, Great Basin, Rocky Mountain, and Eastern)

were limited to observations from 1April to 1 November,

while those in the southern tier of the CONUS (i.e.,

South Ops, Southwest, and Southern) were not con-

strained by time of year. Although snow cover can exist

between 1 April and 1 November in the northern tier of

the CONUS and during the winter in the southern tier of

FIG. 2. Forecasted vs observed (a) air temperature and (b) RH,

with the line of perfect agreement shown for comparison. Density

is a 2D kernel density estimate where darker red indicates a higher

density of points and black dots are the individual data points.
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the CONUS, it was preferable to keep the time horizon

wide so as to include a larger number of potential fire

spread events. This assumption likely resulted in the in-

clusion of data where fire spread would not be possible

(i.e., snow is covering the surface fuel); however, this

should have little or no impact on the final results as the

underlying dependence of the fire behavior model on

NDFD forecast error remains unchanged. These con-

straints resulted in approximately 5.3 million hourly ob-

servations from 1217 RAWS and 807 ASOS stations

(Fig. 1). The data were further constrained to analyze

NDFD performance when the observed 20-ft wind speed

was $4ms21 (approximately 1.5 million observations).

For each random forests analysis approximately 130000

hourly observations were randomly selected (with re-

placement) from the full dataset to construct the training

and testing datasets. Initial sensitivity testing indicated that

results were unchanged with larger sample sizes. The

number of ‘‘trees grown per forest’’ was set to 100 for all

analyses as the out-of-bag prediction error did not sub-

stantially decrease with additional trees (Oshiro et al.

2012). Additionally, variable importance was calculated

using the Breiman–Cutler permutation (Breiman 2001),

and the number of variables randomly selected at each

node split was set to p/3 for regression and sqrt(p)

for classification, where p is the number of variables.

Model validation was completed by assessing the variance

explained and the overall error rate for regression and

classification, respectively, using both the out-of-bag sam-

ples and the test dataset.

3. Results

a. General NDFD forecast skill

NDFD forecasts for air temperature and RH from

both datasets (all and wind$4m s21) produced RMSEs

FIG. 3. Mean fractional bias in 20-ft wind speed, binned by observedwind speed category and station

type. Values in the graph represent the RMSE for that particular combination of observed wind speed

andstationtype.Thenumberofobservationswithineachcategory isalsoshown, roundedtomillions (M).

FIG. 4. Variable importance for the measured weather station

variables, ranked from highest to lowest, obtained from the ran-

dom forests analysis of surface head fire rate-of-spread error

(modified z score) regressed against error in forecasted weather.
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of about 28C and 10%–11%, respectively (Table 3).

Overall, the forecast bias during hours with significant

fire spread was toward slightly lower temperatures and

higher RH values than observed, but no apparent trend

in bias was evident when viewed over the entire range of

values in the dataset (Fig. 2). This skill in forecasting air

temperature and RH resulted in dead-fuel moisture

contents with RMSEs between 7% and 17%, with the

greatest error associated with the smallest dead-fuel size

class. Overall, the bias in dead-fuel moisture content was

toward wetter fuels (i.e., higher fuel moistures).

The NDFD generally overpredicted wind speed when

considering all the data, with an RMSE and MBE of 1.9

and 0.5m s21; however, the data indicated a significant

and increasing underprediction bias when the observed

wind speedwas$4ms21, with anRMSE and anMBEof

2.1 and20.5m s21, respectively (Table 3). Generally, as

the observed wind speed increased, the underprediction

bias in predicted wind speed also increased (Fig. 3).

b. Relative importance of forecast error on head fire
rate of spread

Surface head fire rate-of-spread error was most

strongly affected by the error in forecasted wind speed

(Fig. 4). The random forests model explained 42%of the

variance in the modified surface rate-of-spread z score

with the wind speed error having more importance than

the next most important variable, the sum of the error in

RH during the previous 5 h (Table 4). The error in

forecasted RH was slightly more important in the im-

mediately preceding hours (1–4) than in either the cur-

rent hour or 5h previous.

c. Accuracies for good surface head fire
rate-of-spread predictions

Classification of good and bad surface head fire rate-

of-spread predictions using the Cruz and Alexander

(2013) threshold of 635% error resulted in an overall

classification error rate of 28% (Table 4). The 20-ft wind

speed forecast accuracy needed to achieve a good sur-

face head fire rate-of-spread prediction varied according

to desired prediction accuracy (Fig. 5). At the 50%

probability threshold, the Cruz and Alexander (2013)

method required wind speed accuracies of approxi-

mately 620%–30% of the observed value.

d. Wind speed forecast error

Regression of the 20-ft wind speed error against the

full set of topographic, fuel, and miscellaneous variables

produced a model that explained 37% of the total var-

iance (Table 4). The most important variable affecting

NDFDwind speed forecast accuracy was wind type; that

is, as the observed wind speed increased, the 20-ft wind

TABLE 4. Random forests model evaluation statistics for each objective using both the out-of-bag and test datasets.

Objective

2 3 4 4

Analysis type Regression Classification Regression Regression

Dependent variable ROS error

(modified z score)

ROS error

(good 6 35%)

20-ft wind speed error

(forecast 2 observed) /
all data

20-ft wind speed error

(forecast 2 observed) /
observed wind $ 4m s21

Validation (out of bag)

% variance explained 42 — 37 27

Overall error rate (%) — 28 — —

Validation (test data)

% variance explained 42 — 37 27

Overall error rate (%) — 29 — —

FIG. 5. Partial dependence plot of 20-ft wind speed error (% of ob-

served) from random forests classification analysis of surface head fire

rate of spread using the Cruz andAlexander (2013) threshold of635%

error. Partial dependence represents the marginal effect of the variable

after considering the average effect of the other variables. The gray area

represents the 95% confidence band around the regression line.
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speed error also increased (Fig. 6). The WFO and

GACC were also important variables with the most

pronounced differences apparent under wind speeds

that exceeded 12ms21 (Fig. 7). For example, some

WFOs and GACCs tended to have poorer high wind

speed forecasts than other WFOs or GACCs (Fig. 8).

When only wind speed events where the observed wind

was $4ms21 were considered, there was a decrease in

the total variance explained (27%) (Table 4), with the

WFO and GACC variables becoming most important.

However, the importance of the terrain complexity

variables increased. That is, as terrain complexity

increased (elevation standard deviation or elevation

range), the underprediction bias in wind speed forecast

error also increased (Fig. 9). The other explanatory

variables had a relatively minor influence on the wind

speed forecast error and are not discussed further.

4. Discussion

a. NDFD forecasts and fire behavior

The 1-h lead-time forecasts generally produced accu-

rate air temperature and RH values during 2015. Similar

to Myrick and Horel (2006), who focused on the western

United States during the 2003/04 winter season, we found

that the average forecast error for air temperature was

about 28C. Within the context of the current study, the

effect of accurate air temperature and RH forecasts on

fire behavior is through higher precision in the modeled

dead-fuel moisture content. Dead fuels, particularly fine

dead fuels (particle diameter , 6mm), readily exchange

moisture with the atmosphere and reach equilibriumwith

the environment over time scales dependent upon parti-

cle size (Fosberg and Deeming 1971). The time required

to reach equilibrium is generally on the order of hours,

even for the smallest dead-fuel particles, which delays the

impact of changing environmental conditions on dead-

fuel moisture content (Britton et al. 1973; Fosberg and

Deeming 1971). The importance of this delayed impact

was confirmed in our analysis that suggested it was the

cumulative effect of RH forecast error that was more

important to the rate-of-spread predictions than the

forecast error in any single hour. This dependency on a

relatively long time horizon makes it difficult to define

guidelines for acceptable forecast accuracy as the relative

importance of time on RH forecast error is not clear (i.e.,

the forecast error in some preceding hours is more im-

portant than others).

Across the CONUS the NDFD in 2015 tended to

overpredict the 20-ft wind speed; although, approxi-

mately 70% of the data occurred when the observed

wind was ,4ms21. When the dataset was subset to

periods when the observedwind speedwas$4m s21, the

wind speed forecasts became increasingly biased toward

FIG. 6. Variable importance for each explanatory variable obtained from the random

forests analysis of 20-ft wind speed error regressed against a set of topographic, fuel, and

miscellaneous variables (see Table 2).
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underprediction. This is similar to previous work by Zhu

and Pi (2014), who also found that the NWS under-

predicted wind speeds when observed winds were

greater than about 8.9m s21, based on a historical

analysis of weather forecasts for 60 metropolitan areas

across the CONUS. In terms of the NDFD and its

current use in the wildland fire community, an over-

prediction of wind speed is more acceptable than an

underprediction as fire-spread projections are more

likely to be conservative (i.e., underestimating time of

arrival). This suggests that the NDFD wind speed fore-

casts are suitable for making surface fire rate-of-spread

predictions under most conditions. However, because of

the underprediction bias during high wind speeds, cau-

tion should be used when weather events that are asso-

ciated with high wind speeds are anticipated, such as

during thunderstorms and cold-front passage, as this will

result in fire spread predictions that overestimate the

time of arrival. This point is particularly important to fire

managers because wildfire case studies and fatality in-

vestigation reports have frequently recognized the links

between high wind speed events and large fire growth

(Butler and Reynolds 1997; Graham et al. 2011) and

firefighter fatalities (Alexander et al. 2015).

The strong link between rate of spread andwind speed

found in the present study was anticipated as wind has

long been known to be an important factor in wild-

land fire spread. Previous sensitivity analyses of the

Rothermel model using Monte Carlo–based methods

(Jimenez et al. 2008; Liu et al. 2015b) or global sensi-

tivity analyses (Liu et al. 2015a) have demonstrated that

the predicted rate of spread is highly sensitive to wind

speed, which varies by fuel model, particularly for fuel

models associated with horizontally oriented fuel beds

such as timber litter (Rothermel 1972; Catchpole et al.

1993). Fire behavior model sensitivity to wind is desir-

able as wind is known to play a dominant role in con-

vective heat transfer (Cheney et al. 1998; Frankman

et al. 2013) and tends to be significantly correlated with

the rate of spread obtained from field measurements

(Cheney et al. 1993; Cruz et al. 2013).

Based on the present analysis, we propose that wind

speed forecasts should strive for accuracies within

620%–30% of the observed value, as this is the window

when the predicted rate of spread is most likely to be

within 635% error. This desired forecast accuracy is

specific to the Rothermel model and is considered most

applicable at the national scale as the analysis was

FIG. 7. Plots of predicted 20-ft wind speed error by WFO, binned by wind type, from the random forests model of

20-ft wind speed error regressed against a set of topographic, fuel, and miscellaneous variables (see Table 2).
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focused on the average effect of wind speed error across

multiple fuel types and fuel models. It is expected that a

wider wind speed accuracy window would be acceptable

for predicting rate of spread in fuel models associated

with horizontally oriented fuel beds or for nonhead fire

spread directions. An artifact of the presentation of the

desired forecast accuracy as a percentage of the ob-

served wind speed is that it implies that increasing wind

speed forecast accuracy, in terms of the actual value, is

required at lower observed wind speeds. The reality of

wildland fire behavior prediction is that the accuracy of

rate-of-spread predictions under low wind conditions is

less important than at high wind speeds. Thus, emphasis

should be placed on achieving the forecast accuracy of

620%–30% during higher wind speed conditions.

b. Wind speed forecast error

Analysis of the underlying factors controlling wind

speed forecast error within the NDFD indicated that

several variables could be important. The location of the

forecast, in terms of the WFO and GACC where it

originated, was shown to be one of the more important

factors affecting the wind speed forecasts. This was

similar to the findings of Zhu and Pi (2014), who also

concluded that forecast accuracies for areas across the

CONUS were sensitive to geographic location. Assess-

ment of the differences in wind speed forecast error

between individual WFOs and GACCs is beyond

the scope of the current study. However, there are

potentially a number of factors that could be related to

these differences, including small-scale weather station

location/placement issues and unusual weather activity

for a particular region in 2015. Additionally, individual

forecaster intervention or WFO-specific methodologies

for interpreting and interpolating NWP model output

could help explain why some WFOs produced more

accurate high wind speed forecasts than others.

As demonstrated in previous studies (i.e.,Wagenbrenner

et al. 2016), terrain complexitywas identified as a significant

contributor to wind speed forecast error. Unresolved ter-

rain complexity hinders the ability ofmodels to capture and

incorporate important terrain influences on wind speed

FIG. 8. Boxplots of predicted 20-ft wind speed error byGACC, binned bywind type, from the random forestsmodel

of 20-ft wind speed error regressed against a set of topographic, fuel, and miscellaneous variables (see Table 2).

Abbreviations for the GACCs are Eastern, East; Great Basin, GB; North Ops, NOps; Northern Rockies, NR;

Northwest, NW; Rocky Mountain, RM; South Ops, SOps; Southern, South; and Southwest, SW.
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(Butler et al. 2015), although promising techniques do exist

that can be utilized to help downscale coarse-grid wind

predictions to incorporate important terrain effects

(Wagenbrenner et al. 2016; Forthofer et al. 2014). De-

spite the factors described above, it should be noted that

the current analysis of wind speed forecast error

explained a relatively minor proportion of the total

variability. Additional variables such as the presence of

short-lived atmospheric boundaries and/or a more de-

tailed analysis with a smaller subset of weather stations

could likely significantly improve our understanding of

the factors controlling wind speed forecast error.

5. Conclusions

The NDFD is an important tool for wildland fire

managers in the United States as it allows them to pre-

dict fire behavior and subsequently assess its impacts to

firefighters and affected communities. The evaluation

during periods of active fire spread and in fire-prone

locations across the CONUS during 2015 revealed that

the NDFD is capable of producing accurate air tem-

perature and RH forecasts, which is manifested in in-

creased precision in estimates of dead-fuel moisture.

Additionally, on the whole the NDFD produces wind

speed forecasts that are conservative in nature (i.e.,

overpredict wind speed). However, when wind speed

exceeds approximately 4m s21, the NDFD forecasts

display an increasing underprediction bias. This under-

prediction during highwind speeds is critical as those are

the times known to coincide with rapid fire rates of

spread and large fire growth. The underlying causes of

the wind speed forecast error remain largely unknown,

but appear to be related to spatial location, in terms of

specific WFO and geographic area, and terrain com-

plexity. Engagement of the wildland fire community by

NWS forecasters on the effective use of the NDFDwind

speed forecasts for fire behavior prediction, including

applying bias corrections or working within an envelope

of expected outcomes, will likely help facilitate better

predictions and address potential concerns. Future

evaluation of the NDFD should focus on determining

the underlying source of the underprediction bias in the

high wind speed forecasts. In the meantime, wildland

fire managers should be aware of the current limitations

of the NDFD and work toward utilizing additional tools

(e.g., spot weather forecasts) during critical fire weather

conditions.
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