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The authors of the above mentioned paper regret that there were
errors in Figures 2 and 7. The all-terrain vehicle (ATV) ignition

lines depicted in Fig. 7awere missing the ignition line along the
southeastern boundary of the L2F block, which was where the
prescribed burn at L2F was initially lit. The omission has since
been corrected in the cited data archive product (Hudak et al.

2017). Moreover, the ignition lines should not have been shown
in Fig. 7, which was otherwise correct, but should have been in

Fig. 2 in association with the number of Fire Radiative Power
Density (FRPD) observations, as was stated in the Fig. 2 caption
of the original paper. Corrected Figures 2 and 7 are provided
below.
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Fig. 2. Number of fire radiative power density (FRPD) observations recorded by the airborne Wildland Airborne Sensor Program (WASP) instrument per

active fire pixel while imaging the 2012 burn blocks. Overlaid are the all-terrain vehicxle (ATV) ignition lines (Hudak et al. 2017).
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Fig. 7. Original uninterpolated (a, e), ordinary kriging (OK) interpolated (b, f), and Gaussian

conditional simulation (GCS) interpolated (c, d, g, h) fire radiative energy density (FRED)

maps of the 2012 burn blocks (L1G, L2G, L2F). Maps based on original FRED estimates are

shown in the left column (a, b, c, d); maps based on hottest FRED estimates are shown in the

right column (e, f, g, h).
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Abstract. Fire radiative energy density (FRED, J m�2) integrated from fire radiative power density (FRPD, W m�2)
observations of landscape-level fires can present an undersampling problem when collected from fixed-wing aircraft. In

the present study, the aircraft made multiple passes over the fire at ,3 min intervals, thus failing to observe most of the
FRPD emitted as the flame front spread. We integrated the sparse FRPD time series to obtain pixel-level FRED estimates,
and subsequently applied ordinary kriging (OK) and Gaussian conditional simulation (GCS) to interpolate across data

voids caused by the undersampling. We compared FRED interpolated via OK and GCS with FRED estimated
independently from ground measurements of biomass consumed from five prescribed burns at Eglin Air Force Base,
Florida, USA. In four of five burns considered where undersampling prevailed, OK and GCS effectively interpolated

FRED estimates across the data voids, improving the spatial distribution of FRED across the burning event and its overall
mean. In a fifth burn, the burning characteristics were such that undersampling did not present a problem needing to be
fixed. We also determined where burning and FRPD sampling characteristics merited applying OK and CGS only to the

highest FRED estimates to interpolate more accurate FRED maps.

Additional keywords: fire behaviour, fire modeling, fire modelling, fire radiative energy, remote sensing, RxCADRE.
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Introduction

Biomass burning is one of the main sources of greenhouse gas
emissions in the atmosphere (Seiler and Crutzen 1980; Bowman
et al. 2009). In particular, many of the trace gases emitted by

burning vegetation have oxidising components, and the organic
carbon and carbon black aerosols scatter and absorb solar
radiation respectively (Andreae 1991; Jacobson 2001). The

combination of these compounds with electromagnetic radia-
tion, added to changes in land surface properties, can cause
changes in radiation balance, biogeochemical cycles and cloud

nucleation (Kaufman et al. 1990). Quantification of fuel stocks
and fuel consumption, and the emission of gases and aerosols to
the atmosphere, are important issues for the fire science com-
munity and government agencies.

Burning biomass during wildland fire generates radiative
heat measurable remotely and quantified as fire radiative power
(FRP; W), which can be integrated over time to estimate fire

radiative energy (FRE; J). FRP and FRE are linearly related to

biomass combustion rate and biomass combusted respectively

(Wooster et al. 2003; Ellicott et al. 2009; Freeborn et al. 2011;
Kremens et al. 2012; Smith et al. 2013;Hudak et al. 2016b). As a
consequence, fire energy estimations can support large-area

estimations of biomass burned (Roberts et al. 2011) and atmo-
spheric emissions (Kaiser et al. 2012), and at the local level
supply important information to fire management plans, fire and

smoke models and measurement methods (Ottmar et al. 2016a).
Owing to the large extent of wildland burned areas and the

feasibility of collecting radiative power measurements remotely

over a range of spatial and temporal scales, remote sensing may
be the most viable tool in monitoring wildland fires and FRE
across time and space (Wooster et al. 2003). Satellite and high-
resolution aerial imagery has been used to monitor fires over

large and small areas at high resolution (Riggan et al. 2004;
Roberts and Wooster 2008). Remote sensing techniques have
been applied for detection, mapping and quantification of

biomass burned, FRP, FRE and atmospheric emissions
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(Van Der Werf et al. 2003; Smith and Wooster 2005; Roberts
andWooster 2008; Boschetti and Roy 2009; Ellicott et al. 2009;
Kaiser et al. 2012; Strand et al. 2016).

Remote sensing at mid-wave infrared (MWIR) and long-
wave infrared (LWIR) wavelengths provides excellent oppor-
tunities for estimating FRP via the dual-band technique (Dozier

1981). The Moderate-Resolution Imaging Spectroradiometer
(MODIS) sensor (1-km resolution) onboard EOS-Terra and
Aqua, Visible Infrared Imaging Radiometer Suite (VIIRS)

(375-m resolution) and other polar-orbiting satellites are capa-
ble of detecting active fires and estimating FRP only twice daily
(Giglio et al. 2003; Schroeder et al. 2014), making them highly
affected by temporal undersampling. The latest generation of

geostationary satellites, such as Meteosat Second Generation
(MSG), the recent GOES-R (launched by NOAA-NASA
November 2016) and Himawari-8 (launched by the Japan

Meteorological Agency October 2014) have potential for
near-real-time fire monitoring, but with lower spatial resolution
than polar-orbiting satellites: 3 km at nadir for MSG, 2 km for

GOES-R and Himawari-8.
Undersampling is a major issue affecting the accuracy of

FRE retrievals from MODIS FRP observations, and from polar

orbiting sensors in general (Boschetti and Roy 2009; Kumar
et al. 2011). Boschetti and Roy (2009) observed that the
acquisition constraints imposed by the satellite sensing and
orbit geometry, clouds and active fire product omission errors

resulted in undersampling both in the spatial and temporal
domain, and that the straightforward linear integration of FRP
observations through time resulted in a systematic underestima-

tion of energy release and consequently of biomass consumed.
Ordinary kriging was found to be an effective way of compen-
sating for MODIS temporal oversampling.

Continuous imaging of active fires over large areas at high
spatial resolution has remained a challenge, though unmanned
aerial vehicles (UAV) with suitable imaging systems may offer
opportunities for modest-sized fires (Zajkowski et al. 2016).

Moving aerial platforms without hovering capability, such as
fixed-wing aircraft, have more flexibility than spacecraft to
collect repeated observations over the full duration of a typical

fire, but nonetheless collect only a sparse sample of FRP over
time. Albeit more frequent than the sampling provided by
satellite systems, the temporal sampling of aircraft observations

negatively affects the estimation of FRE whenever part of the
fire spread is missed. Hudak et al. (2016b) produced landscape-
level FRE maps from repeated airborne FRP observations.

Issues with spatial and temporal undersampling; however,
remained: with a fast-moving flame front, each location was
actively burning only for a limited time. In some locations, the
aircraft failed to acquire any measurements while the fire was

actively burning, resulting in gaps in the FRE map. As a
consequence, Hudak et al. (2016b) suggested that kriging
might also be needed when retrieving FRE from airborne

high-resolution observations.
Spatial variation in fire radiative flux may occur owing to

small changes of both wind direction and speed frequently

altering the fire spread (Clements et al. 2016), and owing to
heterogeneously distributed fuel (Hudak et al. 2016b). Various
statistical methods can be used to interpolate a value at an
unobserved location from observations at nearby locations

while accounting for local spatial variability, such as kriging
and other geostatistical methods (Journel and Huijbregts 1978).
An advantage of geostatistical techniques is the ability to

evaluate the uncertainty of the predicted response (FRE, in
our case). Ordinary kriging (OK), as a geostatistical data
interpolation method, uses the spatial dependency between

neighbouring samples to estimate values at any position within
the analysis space, to which the semivariogram model is fitted,
without anisotropy and with minimum variance (Journel and

Huijbregts 1978; Goovaerts 1997). Spatial dependency could be
evaluated by a spatial dependency model that provides para-
meters to estimate the response at unsampled places (Goovaerts
1997). OK has been widely used, for example, for mapping

forest canopy height (Hudak et al. 2002), cork and pine resin
production (Nanos et al. 2001; Montes et al. 2005), and
lightning-caused wildfires (Ordóñez et al. 2012).

However, kriging methods have some disadvantages: inter-
polated surfaces are smoothed, and can potentially be biased,
with underestimation and overestimation of the response vari-

able. An alternative geostatisticalmethod isGaussian simulation,
which preserves the spatial characteristics and variance of the
sample data; moreover, Gaussian conditional simulation (GCS)

honours the measured values at the sampled locations (as
opposed to ‘unconditional’ simulation) (Andriotti 2004). Berter-
retche et al. (2005) used GCS to estimate leaf area index across a
boreal forest. Haywood (2006) used GCS to estimate distribution

and abundance of blackbutt (Eucalyptus pilularis Sm.). Wei and
Shao (2009) conducted a study using GCS to verify the spatial
variability of soil pH values in a small watershed.

In this context, our study aims to use OK and GCS to
interpolate FRE estimates separated by data voids that are an
artefact of undersampling of FRP across a burn area. We

assumed that the fire spread rate and FRP varied independently
from the timing and frequency of the image collection, such that
the FRP time series constituted an unbiased sampling of the fire
activity. By extension, similar implementation of geostatistical

interpolation or simulation methods more broadly to satellite
FRP products could have useful implications for mapping and
management of carbon pools (fuels) and fluxes (gas and partic-

ulate emissions), with associated impacts on air quality at
regional and global scales, that contribute to greenhouse gases
and carbon balance.

Materials and methods

Study area and prescribed fires

The study was conducted over five prescribed burns (hence-
forth, ‘burn blocks’) performed at Eglin Air Force Base (AFB)
located in the Florida panhandle (USA), during the Prescribed

Fire Combustion and Atmospheric Dynamics Research Exper-
iment (RxCADRE) in 2011 and 2012 (Ottmar et al. 2016a).
Elevations range from 52 to 85mwith flat topography and deep,

well-drained sandy deposits of Quartzipsamments of the Lake-
land series. Mean annual precipitation is 158 cm and mean
annual temperature is 19.88C (Overing et al. 1995). Most for-

ested areas are dominated by longleaf pine (Pinus palustris

Mill.) maintained by Eglin AFB managers, with frequent fires
prescribed typically at 1–3 year intervals and recorded since
1972 in a geodatabase.
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Five land-management blocks were selected for burning,

which followed operational prescribed burning protocols used at
EglinAFB. The 2011 burn blocks (703C and 608A)were ignited
with incendiary spheres deployed from a helicopter, whereas the

2012 burn blocks (L1G, L2G and L2F) were ignited from all-
terrain vehicles on which were mounted drip torches. By either
method, the strategy was to lay firelines in parallel strips to

produce heading or flanking fire.

Fuels

Three burn blocks were forested (703C, 608A and L2F) whereas

two were non-forested (L1G and L2G) (Table 1). Surface fuel
beds in the non-forested units comprised variable proportions of
litter, grasses, forbs and shrubs dominated by Turkey oak
(Quercus cerris L.), whereas surface fuel beds in the forested

units comprised the same materials plus longleaf pine needle
cast and some woody debris (Ottmar et al. 2016b). Fuel accu-
mulations since the previous burn were 23 months at 703C and

608A, 12 months at L1G, and 19 or 31 months at L2G and L2F,
depending on the locality.

Shrub, herbaceous (forbs, grass and needles), litter and

woody debris were measured both pre- and post-fire in separate
1 m2 (burn blocks besides L2F) or 0.25 m2 (L2F) destructive
harvest (clip) plots; ovendry weights of each component were

summed to calculate total surface fuel load, as described in
Ottmar et al. (2016b). Fuel consumption (Table 1) was esti-
mated for each burn block as the difference in measured fuel
loads between equal numbers of pre- and post-fire clip plots;

from these calculations of fuel consumption (FC, kg m�2),
expected values of fire radiative energy density (FREDexp) were
calculated using three published linear relationships between FC

and FRE, all based on small-fire experiments conducted under
different conditions. Wooster et al. (2005), burning outdoors,
combusted 15 fuel beds of Miscanthus grasses dried to ,12%

gravimetric moisture content. Freeborn et al. (2008) assembled
44 fuel beds collected across a broad range of fuel types, which
were oven-dried, reassembled and burned in a combustion
chamber. Smith et al. (2013) explicitly explored effects of fuel

moisture in a combustion laboratory, burning 24 fuel beds of
Pinus monticola Douglas ex D.Don (western white pine) nee-
dles while varying fuel gravimetric water content (Wc, %) from

1 to 14%. Unlike Wooster et al. (2005) and Freeborn et al.

(2008), Smith et al. (2013) did not force the simple linear
regression model intercept through the origin when formulating

the linear relationship between FRE and FC. In the present
study, Wc was calculated from day-of-burn fuel moisture

measurements reported by Ottmar et al. (2016b) for litter,

herbaceous (grasses and forbs), shrubs (including oaks), and
woody fuels; the overallmeanWcwasweighted by consumption
estimates also reported byOttmar et al. (2016b) for each of these

four fuel components in each burn block.

Wildfire Airborne Sensor Program (WASP) LWIR image
acquisition and processing

The Wildfire Airborne Sensor Program (WASP) system

(McKeown et al. 2004; Ononye et al. 2007) was mounted on
board a twin-engine Piper Navajo that flew over the burn blocks
at ,3-min intervals to image the active fires on the dates
recorded in Table 1. The WASP LWIR sensor has an 8–9.2 mm
bandwidth, and in this study, spatial resolution of 1.5–3 m and
spatial extent of 0.9–1.9 km (Dickinson et al. 2016). WASP
LWIR digital numbers were calibrated to at-sensor radiance

(W m�2 sr�1) and then used to estimate fire radiative power
density (FRPD,Wm�2) (Dickinson and Kremens 2016). Active
fire pixels were differentiated from ambient pixels using a

FRPD threshold of 1070 W m�2, which was determined inde-
pendently from nadir-viewing, ground-based radiometers
(n¼ 60) distributed across the burn blocks (Hudak et al. 2016b).
At each active fire pixel, the FRED was calculated from the

FRPD time series, with FRED estimated (FREDest) (J m
�2) for

each fire pixel using the trapezoidal rule for numerical inte-
gration by Eqn 1, following Boschetti and Roy (2009):

FREDest ¼
Xn

i

0:5 FRPDi þ FRPDi�1ð Þ ti � ti�1ð Þ ð1Þ

where FRPDi is the ith FRPD observation in the time series, and

ti is its acquisition time expressed in seconds (s), starting from
the first observation. Pixels with,4 FRPD measurements were
assumed to have a fire rate of spread of 0.25 m s�1, as reported

by Butler et al. (2016) for the L2G burn block, which conve-
niently had the median fuel consumption of the five burn blocks
considered. Although images were collected every 3 or 4 s

within an overpass, ,3 min would elapse between overpasses
(Dickinson et al. 2016, Hudak et al. 2016b), resulting in
temporal undersampling (Fig. 1a). Spatial undersampling also
occurred in that the spatial extent of the image frames was

smaller than the burn blocks, especially for the larger 703C and
608A blocks burned in 2011 (Fig. 1b). Temporal and spatial
undersampling effectively reduced the number of FRPD obser-

vations collected per pixel (Fig 2 and Fig. S1, available as
Supplementary Material to this paper).

Table 1. Description of the prescribed burn blocks at Eglin Air Force Base

Sources: adapted from Ottmar et al. (2016a, 2016b) and Hudak et al. (2016b)

Burn block Area (ha) Burn date Surface fuel

load (Mgha�1)

Fuel consumption

(Mgha�1)

Relative

consumption (%)

Fuel water

content (%)

Mean overstorey

canopy cover (%)

703C 668 6-Feb-11 5.35 3.03 56.5 21.2 25

608A 828 8-Feb-11 5.97 4.68 79.1 17.6 22.7

L1G 454 4-Nov-12 2.15 1.54 72.7 43.9 0

L2G 127 10-Nov-12 3.57 3.09 85.3 33.8 0

L2F 151 11-Nov-12 10.8 6.36 58.9 17.8 37.3
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Canopy cover in the three forested blocks (Table 1) was
calculated at the pixel level from airborne LiDAR returns

collected at a nominal point density of 7 m�2 (Hudak et al.

2015b, 2016b). Mitigation of the FRPD signal from these
surface fires due to occlusion by the overstorey trees in the

three forested blocks was assumed to be in proportion to over-
storey canopy cover (Mathews et al. 2016), so the FRPD
estimate at each pixel was increased by the canopy cover

proportion (Hudak et al. 2016a, 2016b).

Data transformation

The transformation and back-transformation method used in this

study was chosen based on the characteristics of the lognormal
FRED data distribution, characterised by positive skewness
where the mean is greater than the median of the distribution
(see Supplementary Material). The goal of the lognormal trans-

formation is to have a more or less normalised frequency distri-
bution, instead of a skewed distribution (Yamamoto 2005). The
variance of the data is reduced by normalisation, which means

that the calculation of statistics (weighted averages and OK
estimates) is improved (Goovaerts 1997; Yamamoto 2005,
2010). The lognormal kriging is the geostatistical estimator based

on a logarithmic transformation. This estimator takes advantage
of a transformed data distribution, reducing the influence of a few
high values on the model (Yamamoto and Furuie 2010).Without

data transformation, low values are overestimated and high
values are underestimated (Yamamoto 2010).

It is necessary to return the transformed lognormal kriging
estimates back to the original measurement scale, but the back-

transformation itself introduces a bias. Several authors have
proposed alternative approaches for transformation and back-
transformation (Journel 1980; Yamamoto 2005; 2007; 2010;

Yamamoto and Furuie 2010), and after some tests with the study
dataset and equations, the equations proposed by Yamamoto

(2010) (Eqns S1a, S1b) and Papritz and Schwierz (2016) (Eqns
S2a, S2b) were combined (Eqns 2a, 2b).

FREDtransf ¼ lnðFREDest=medianFREDestÞ ð2aÞ

FREDback transf ¼ exp FREDpre

�

þ 0:5� varianceFREDtransf � varianceFREDpre
� ��� medianFREDest

ð2bÞ

where FREDest is the input value (observed value) and FREDpre

is the predicted value after OK or GCS.

Hottest pixel subset

The FREDest values were transformed with Eqn 2a. Examining
histograms of transformed FRED rasters revealed trimodal
distributions for each burn block, when in theory the trans-

formed distributional shapes should be unimodal if not for
undersampling (Fig. 3). We assumed the hottest pixels, those of
the rightmost peak with the greatest recorded energy release, to
be those unaffected, or least affected, by undersampling bias.

For each burn block, we used the low value between the middle
and rightmost peaks of the histogram as an objective criterion
for defining a ‘hottest’ pixel threshold, back-transformed

that threshold (Eqn 2b) and dropped values below the back-
transformed threshold in the original FRED rasters to produce
new rasters of just the hottest pixels. OK and GCS were per-

formed on hottest FRED rasters that represented where more
FRPD observations happened to be captured, in addition to
being performed on the original FRED rasters.

Ordinary kriging

OK was performed with the Spatial Analyst Tools extension of
ArcGIS 10.2 (ESRI, Redlands, CA, USA), which automatically
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burn block L1G. Breaks in the FRPD time series, when the airborne sensor

was not collecting imagery over the fire, illustrate temporal undersampling.

(b) Burn block L1G (bold outline) and overlapping WASP image frames

(solid grey squares) from one plane overpass. Many frames imaged every 3 s

did not completely cover burn extents, illustrating spatial undersampling.

Abbreviation: UTC: Universal Time Co-ordinated.
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Overlaid are the all-terrain vehicle (ATV) ignition lines (Hudak et al. 2017).
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fitted semivariograms and provided a map with predictions as a
final product. Semivariograms were generated from the hot
pixels in the final map to compare with the original hot pixel

semivariograms. For fitting the experimental semivariograms,
we tested the exponential, Gaussian and spherical models (see
Supplementary Material).

To analyse the degree of spatial dependence of the attribute
under study, we used the Spatial Dependence Index (SDI%),
defined by Eqn 3:

SDIð%Þ ¼ C1

C0 þ C1
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where C0¼ nugget effect and C0þC1 is the partial sill.

Cambardella et al. (1994) classified SDI as follows: (i) SDI
, 25%, strong spatial dependence; (ii) 25%, SDI, 75%,
moderate spatial dependence; and (iii) SDI. 75%, weak spatial
dependence.

WASP pixel-based estimates of FRED were tested for
anisotropy (a directional component) following Journel and
Huijbregts (1978) and Wackernagel (2003).

Gaussian conditional simulation

GCS was performed with the geostatistical analyst tool in
ArcGIS 10.2 (see Supplementary Material). Briefly, the steps
used for the analysis are given by Andriotti (2004) as follows.

(1) The data distribution was transformed to normal: the sam-

pled data were prepared using trend removal, declustering
and normal score transformation.

(2) Simple kriging was applied, in which the semivariogram
was estimated and search neighbourhood was defined.

(3) Conditioned simulations were performed to the observa-
tions 100 times: the simulation using the simple kriging
raster was used as input, original data were used as a

conditioner. The simulations were subsequently back-
transformed to the natural scale.

(4) After the conditional simulation was applied, output rasters

were generated cell by cell based on statistic type (mean,
maximum and standard deviation) calculated across the 100
simulated rasters.

Accuracy assessment

Accuracy of interpolated FREDmaps comparedwith the original

FRED maps was tested using two independent ground datasets
described byHudak et al. (2016b). The first dataset was estimates
of FRED integrated from 52 ground-based FRPD measurement
instruments distributed across all five burn blocks at accurately

surveyed instrument locations (Hudak et al. 2015a, 2016c). The
field of view (FOV) varied between different nadir-viewing
ground sensors: 5.5 m tower-based, dual-band radiometers with a

2.68 m-radius FOV (n¼ 33) (Dickinson et al. 2016); 8.2-m
tripod-based radiometerswith a 4.45m radius FOV (n¼ 9); 8.2m
tripod-based LWIR cameras (n¼ 10) with either a 2.5� 3.3 m

FOVor a 4.8� 6.4mFOV (O’Brien et al. 2016). Given the range
of instruments with different FOVs, and uncertainty over what
portion of the FOV might include a WASP data void, we simply

extracted the WASP pixel value at each instrument location,
which was of survey-grade accuracy (Hudak et al. 2016c). The
second dataset was expected values of FRED calculated from
observed fuel consumption, estimated by multiplying percentage

consumption observed at each burn block (Table 1) with pre-fire
surface fuel load measurements collected at 279 destructive
sample plots distributed across all five burn blocks byOttmar and

Restaino (2014), while also factoring in fuel water content
(Table 1) as described in the preceding fuels section. We
extractedWASP FRED pixel values at clip-plot centre locations,

and assumed the effect of fuel removal from the 1� 1-m (burn
blocks besides L2F) or 0.5� 0.5 m (L2F) clip plots had a negli-
gible effect on the FRPD signal recorded byWASP at the 3� 3m

(L1G and L2G), 2.8� 2.8 m (703C), 2� 2 m (608A) or

1.5� 1.5 m (L2F) resolution of the WASP pixels. Using R (R
Core Team 2015), paired Wilcoxon signed-rank and Spearman
rank correlation tests were performed comparingWASP-derived

estimates of FRED (original, hottest and interpolated) with both
ground-based estimates of FRED.

Results

The FRED data in all study blocks were highly skewed and
lognormally distributed. After natural log-transformation of the
FRED data (Eqn 2a), models of the semivariance were fitted to

the data that invariably displayed spatial autocorrelation.
Exponential models were used in all OK as they better
approximated the shape of the binned sample semivariograms

than the spherical or Gaussian models also customarily con-
sidered. The SDIwas,25% in all burn blocks, indicating strong
spatial dependency (Table 2). Anisotropy was found to be
negligible in all five burn blocks (Table 2).

Semivariogram range values did not show considerable
variability among the blocks in the original FRED samples,
ranging from 17 to 26m (Table 2; Fig. 4), and in the hottest pixel

dataset, ranging from 10 to 32 m. The average spatial lag in
FRED values for all blocks was 21.44 (�2.86) m.

The nugget effect represents field and experimental variabil-

ity, or random variability that is undetectable at the scale of
sampling (Yamamoto and Landim 2013). Some nugget effect,
as indicated by SDI (Table 2), was observed in two forested
blocks (608A and L2F) when all pixels were considered, and

may be due to obscuration of the FRED signal by the overstorey
tree canopy (Hudak et al. 2016b), although the SDI was zero at
the forested 703C block. Nevertheless, all burn blocks exhibited

strong spatial dependency in FREDwith SDI, 25% for both the
all-pixels and hottest-pixels datasets (Table 2).

The data transformation reduced the data asymmetry to

approximate a normal distribution before kriging. Transforming
the FRED data distributions revealed trimodality in the FRED
data from all five burn blocks (Fig. 3). The L1G block with the

lowest fuel loads (Table 1) had the smallest third peak whereas
theL2F blockwith the highest fuel loads (Table 1) had the largest
third peak (Fig. 3). The L2G block was intermediate in this
respect, with a transformed data distribution closest to normal

(Fig. 3); accordingly, L2G had the smallest skewness statistic
after natural log-transformation (all hot pixels dataset) (Table 2).

Higher FRED values were associated with greater fuel

consumption (Table 1; Fig. 5). Summary statistics of OK FRED
grids were generally comparable with those of GCS FRED grids
for all as well as only the hottest estimates of FRED. Mean

values of FRED grids interpolated from only the hottest pixels
were closer to expected values of FRED at the 703C, 608A and
L2G burn blocks (Fig. 5) based on observed surface loads for
each block (Table 1), whereas at the L1G and L2F burn blocks,

hottest OK and GCS interpolations of FRED exceeded expected
FRED. Variability in FRED estimated and interpolated
across these landscape-level burn blocks was much greater

(particularly at L2F) than the 95% confidence intervals bound-
ing expected FRED, because the latter were based on small-
scale burn experiments of homogeneous fuel beds.

Paired Wilcoxon signed-rank tests showed that WASP-
derived FRED estimates extracted from the OK and GCS grids
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based on just the hottest pixels did not significantly differ from

FRED observed independently at the ground-based sensors
(Fig. 6). However, only the hottest, uninterpolated, WASP-
derived FRED estimates did not significantly differ from inde-

pendent, harvest fuel-derived expectations of FRED (Fig. S2).
WASP-derived FRED estimates were better correlated with 52
ground-based FRED observations than with expected FRED

based on harvested fuel observations (Figs 6, S2). Spearman
correlations between WASP-estimated FRED and ground-
measured FRED decreased following geostatistical interpolation

(Fig. 6). Spearman correlations between WASP-derived FRED
and harvest fuel-based expectations of FRED increased when all
original FRED estimates were interpolated but decreased when
just the hottest FRED estimates were interpolated (Fig. S2).

Discussion

These were all prescribed surface fires, but three of the five burn
blocks considered were forested, where the tree canopy

occluded the FRPD signal recorded by the WASP sensor on
board the aircraft. Based on the finding of Mathews et al. (2016)
that the fraction of FRP recorded at sensor varies linearly and in
inverse proportion to canopy cover, Hudak et al. (2016a, 2016b)

corrected for canopy occlusion by increasing the pixel-level
FRPD value in proportion to the canopy cover proportion
(Table 1). Although estimated FRED variance is higher in the

three forested burn blocks (Fig. 5), so are the estimated FRED
means, i.e. there is no clear trend in the coefficient of variation
between the five burn blocks, regardless of interpolation pro-

cedure employed (or not), suggesting our canopy cover cor-
rection does not appear to have contributed to higher variance in
estimated FRED. Nevertheless, this simple canopy cover cor-
rection does not account for the complex tree crown geometries

as well as the variable sensor view angles that are both con-

tributing to variability in FRED estimated from WASP.
(Although airborne LiDAR data used by Hudak et al. (2016a,
2016b) for the canopy cover correction were collected from the

same airplane as the WASP data, they were collected on dif-
ferent days and following different flight paths.)

The higher nugget effect in the 608A and L2F forested burn

blocks could be attributable to higher fuel loads and fuel
heterogeneity compared with the 703C forested and two non-
forested blocks, as Ottmar et al. (2016a, 2016b) reported higher

fuel load means (except for herbaceous fuels) and standard
deviations in forested blocks than in non-forested blocks. Higher
day-of-burn fuel water contentsmeasured at L1G and (to a lesser
extent) L2G (Table 1) are due to a higher proportion of herba-

ceous and live shrub fuels on these two non-forest blocks before
the burns, compared with the three forested blocks. Higher fuel
water content in L1G and L2G (Table 1) lowered expected

FRED values per Smith et al. (2013) and likely contributed to
lower estimated FRED (Fig. 5).

The predominant wind direction during the prescribed fires

was recorded by ground crews in all burn blocks. At each burn
block, we tested for anisotropy by using directional semivario-
grams conditioned on the wind direction, but what weak (if any)
evidence we found for anisotropy was related not to the wind

direction but to the spatial pattern of the ignition lines (Figs 7,
S3, S4). Ignition lines were oriented perpendicular to the wind
direction by design (to achieve a head fire), yet the directional

semivariograms produced only negligibly different kriging out-
puts compared with isotropic semivariograms (Fig. 4; Table 2).
The helicopter used in 2011 would have dispersed ignitions

more broadly than the all-terrain vehicle (ATV) used in 2012,
yet there is no evidence of this based on the semivariograms

Table 2. Geostatistical and statistical parameters used for ordinary kriging (OK)

Abbreviation: SDI, Spatial Dependence Index

Parameters 703C 608A L1G L2G L2F

General

Model type Exponential Exponential Exponential Exponential Exponential

Anisotropy FALSE FALSE FALSE FALSE FALSE

Lag size 2.3 3 3.5 3 3

Number of lags 12 12 12 12 12

Number of points 75 75 75 75 75

Max. distance (m) 300 300 300 300 300

All pixels

Nugget 0 0.08 0 0 0.07

Major range (m) 18.86 20.83 25.01 22.56 21.62

Partial sill 0.25 0.43 0.36 0.41 0.56

SDI (%) 0 18.30 0 0 12.07

Skewness (transformed data) 0.44 0.17 0.34 0.02 �1.07

Kurtosis (transformed data) 2.59 1.88 2.95 2.38 3.14

Hottest pixels

Nugget 0 0 0 0 0

Major range (m) 27.6 10.39 31.93 17.28 16.12

Partial sill 0.38 0.36 0.28 0.27 0.59

SDI (%) 0 0 0 0 0

Skewness (transformed data) 0.70 0.24 0.91 0.67 0.20

Kurtosis (transformed data) 3.46 2.60 3.68 2.83 2.64
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(Table 2; Fig. 4), which suggests that temporal undersampling,
manifested in the WASP-derived estimates of FRED as a space

for time substitution, had an overriding influence on the spatial
pattern of FRED estimated from WASP.

Temporal undersampling of FRPD was caused by the
,3 min needed for the aircraft to turn around between passes,

which translated into the fire being actively imaged only
15–32%of the time (Hudak et al. 2016b). Spatial undersampling
of FRPD resulted because a single image frame could not always

accommodate the entire active fire, especially in the larger
management blocks such as 608A (Table 1). Both of these
issues come into play given the practical constraints on imaging

landscape-level active fires from fixed-wing aircraft.
We performed OK and GCS interpolation using all FRED

estimates and only the hottest FRED estimates because the
hottest pixels likely represented the least temporally and spa-

tially undersampled (Fig. 1) and most informed WASP-derived
FRED estimates (Figs 2, S1).Mean FREDvalues of interpolated
grids were closer to expected FRED values at 703C, 608A and

L2Gwhen only the hottest pixels were included in interpolation,
overcoming much of the temporal undersampling dispropor-
tionately affecting the lower estimates of FRED. The hottest-

pixel interpolations still fell short of expected FRED at 608A,
the largest burn block (Table 1), and thus where spatial

undersampling of FRPD (Fig. 1b) was greatest. At L2F, the
OK and GCS interpolations of the hottest pixels appear to have
interpolated unrealistically high FREDestimates across sizeable

fuel voids (Fig. 7, most clearly revealed where the GCS standard
deviations are high), thus exceeding expected FRED on aggre-
gation across these burn blocks (Fig. 5). GCS, like OK, pre-

serves the mean of the input estimates in the interpolated
outputs, but offers a distinct advantage over OK in that it also
preserves the variance in the outputs (Berterretche et al. 2005),

making it that much more informative (Figs 7, S3, S4).
Local accuracy of the hottest FRED pixel interpolated grids

suffered relative to interpolating all the FRED estimates, as
evidenced by lower correlations with field-based FRED esti-

mates (Figs 6, S2). Our results indicate that in cases where
greater local accuracy is desired, all available FRED measure-
ments should be used for interpolation. However, FRED

estimates interpolated from just the hottest pixels did not differ
significantly fromFRED estimated independently from ground
sensors, as indicated by paired Wilcoxon-signed rank tests

(Fig. 6). Therefore, under the more likely scenario where an
accurate global (fire-wide) estimate of FRED is desired, it may
be appropriate to subset the hottest FRED estimates before

geostatistical interpolation. The lower WASP FRED estimates
below ,0.2 MJ m�2 in the original estimates (left columns,
Figs 6, S2) are piled on top of each other because of their
reduced sensitivity relative to the ground sensor observations,

which we consider further evidence for the undersampling
problem, and added justification for excluding them for a less-
biased (i.e. more accurate) global estimate, before spatial

interpolation (or not) (right columns, Figs 6, S2). Fig. 5 shows
how subsetting the hottest pixels to overcome FRPD under-
sampling bias greatly increased mean interpolated FRED at all

five burn blocks, with high variation caused by many factors.
On one hand, some of the cooler pixels dropped from consid-
eration may have been sampled for peak FRPD but had little
fuel to burn and release energy. On the other hand, some of the

hottest pixels preserved may still underestimate FRED where
fuel loads and energy release were high yet peak FRPD was
missed in the sampling.

Fuel loads and subsequent fire duration varied between burn
blocks. Fuel loads were lowest and sparsest in the L1G block,
which had burned only 1 year previously, resulting in short fire

duration, fast cooling and fewer ‘hot pixels’ of observable
FRPD. Thus, there were bigger gaps to interpolate between
the FRED estimates (Fig. 7), whether separated by dispersed,

small patches of bare mineral soil or, much more commonly,
undersampling voids. At the other extreme represented by the
L2F block, the observed surface fuel loads were higher and fire
duration and cooling times were longer, providing many more

observations of FRPD over which to integrate a more accurate
estimate of FRED. As a result, the interpolations were informed
by a broader distribution of FRED estimates (Fig. 3) that were

also more closely distributed in space, such that the spatial gaps
between FRED estimates were narrower (Fig. 7). Hudak et al.

(2016b), correcting the same five burn blocks for temporal and

spatial undersampling as were considered in the present study
but applying only aspatial bias corrections, also found the L2F
block to be an outlier for its higher estimated FRED. This is
consistent with our conclusion that L2F, having higher fuel
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Fig. 5. Original- and hottest-pixel estimates of fire radiative energy
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ships (Wooster et al. 2005; Freeborn et al. 2008; Smith et al. 2013). From the
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papers. See Table 1 for observed fuel consumption (FC, kg m�2) and

gravimetric water content (Wc, %).
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density, consumption and fire residence time, was affected
much less by undersampling than were the other four burn

blocks. Therefore, we conclude that spatial interpolationwas not
needed and provided no real gain in the case of the L2F block.

Despite the advantages of interpolating FRED in four of our

five burn blocks, the L2F block revealed a disadvantage of OK
andCGS interpolation, which is that gaps between hot pixelswill
be filled in even when those gaps are real, and not just an artefact

of the undersampling. For instance, many of the large unburned
patches in the original FRED map at L2F actually did not burn,
because they were areas of bare mineral soil exposed between
patchy accumulations of oak leaf litter in the oak hardwoods that

dominated in these vicinities. Elsewhere in L2F, needle cast from
the longleaf pine overstorey created a comparatively homoge-

neous fuel bed more conducive to fire spread. From an opera-
tional standpoint, large areas of ‘false’ estimates of FRED in
what are really unburned patches could be removed by passing a

filter over the final kriging output, to mask out large ‘smooth’
patches with constant values, which could be interpreted as an
artefact of geostatistical interpolation beyond the range indicated

by the semivariograms (Table 2; Fig. 4). Alternatively, where the
GCS standard deviation exceeds the mean (Fig. 7), or perhaps
where the coefficient of variation exceeds 1, could serve as
diagnostics for identifying and correcting for false positives of
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FRED generated by interpolation. It is worth noting that the false

positives interpolated across fuel voids in the L2F block (appear-
ing orange in Fig. 7d, h) are magnified in the mean GCS outputs
compared with the OK outputs. This is because GCS uses simple
kriging, which assigns the global mean, whereas OK assigns a

local mean when interpolations are outside the range of the
semivariograms (Table 2; Fig. 4).

Finally, ancillary data identifying fuel presence or absence

could be leveraged to increase accuracy. We tried co-kriging
using as the ancillary variable pre-fire surface fuel maps
predicted at 5-m resolution across these same five burn blocks

from airborne lidar (Hudak et al. 2016b). AlthoughHudak et al.
(2016b) showed the block-level means of predicted fuel loads

to be accurate, local fuel heterogeneity was poorly represented,
which compromised the utility of their fuel maps for co-
kriging.

Conclusion

In the present study, we applied OK and GCS to maps of esti-

mated FRED to fill in data voids produced as an artefact of
temporal and spatial undersampling of FRPD from a fixed-wing
aircraft. In four of five burn blocks where undersampling arte-

facts prevailed, we foundOK andGCS to be effective and useful
methods for interpolating FRED estimates across data voids,
whereas in a fifth burn block (L2F) where undersampling was

not so prevalent, we found that no spatial interpolation was
needed. The approach as presented in this study could be applied
to other similarly obtained datasets. We also encourage explo-

ration of alternative interpolation approaches tomore accurately
estimate FRED in a spatially explicit manner. The FRPD images
from which FRED was calculated are publicly available on the
US Forest Service Research Data Archive (Hudak et al. 2016a),

as are canopy cover measures and other products derived from
airborne LiDAR (Hudak et al. 2015b), ground-based surface
fuel (Ottmar and Restaino 2014) and FRED data (Dickinson and

Kremens 2015), as well as various ancillary data layers such as
ignition lines (Hudak et al. 2017), burn block boundaries (Hudak
and Bright 2014b), clip-plot locations (Hudak and Bright

2014a), and radiometer and other ground instrument locations
(Hudak et al. 2015a, 2016c) that can assist future analyses.
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