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Wildfire Risk Transmission in the Colorado
Front Range, USA

Jessica R. Haas,∗ David E. Calkin, and Matthew P. Thompson

Wildfires are a global phenomenon that in some circumstances can result in human casualties,
economic loss, and ecosystem service degradation. In this article we spatially identify wildfire
risk transmission pathways and locate the areas of highest exposure of human populations to
wildland fires under severe, but not uncommon, weather events. We quantify varying levels of
exposure in terms of population potentially affected and tie the exposure back to the spatial
source of the risk for the Front Range of Colorado, USA. We use probabilistic fire simulation
modeling to address where fire ignitions are most likely to cause the highest impact to human
communities, and to explore the role that various landowners play in that transmission of
risk. Our results indicated that, given an ignition and the right fire weather conditions, large
areas along the Front Range in Colorado could be exposed to wildfires with high potential
to impact human populations, and that overall private ignitions have the potential to impact
more people than federal ignitions. These results can be used to identify high-priority areas
for wildfire risk mitigation using various mitigation tools.
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1. INTRODUCTION

Wildfires are a global phenomenon that in some
circumstances can result in human casualties, eco-
nomic loss, and ecosystem service degradation. Un-
der certain conditions, human activities (i.e., sup-
pression) can alter the course of the wildfire event.
However, extreme events often overwhelm suppres-
sion and first responder capacity, leading to uncon-
trollable and potentially catastrophic consequences.
High-loss events in the recent past include the 1997
Sumatra and Kalimantan fires of Indonesia (240 fa-
talities), the 2009 Black Saturday bushfires in Victo-
ria, Australia (173 fatalities), and the 2007 forest fires
in Greece (84 fatalities). A comprehensive list spans
the globe and extends back in time. For example,

USDA Forest Service, Rocky Mountain Research Station, 200 E.
Broadway, Missoula, MT 59802, USA.
∗Address correspondence to Jessica R. Haas, USDA Forest
Service, Rocky Mountain Research Station, 200 E. Broadway,
Missoula, MT 59802, USA; jrhaas@fs.fed.us

the 1910 fires in the interior northwest of the United
States (86 fatalities) catalyzed federal wildfire policy
changes and ushered in an era of aggressive suppres-
sion.

Increasingly, the wildfire management commu-
nity is turning to risk assessment as a key input to
the wildfire decision-making processes aimed at pre-
venting loss, for both prefire mitigation activities as
well as active incident management.(1–4) The funda-
mental pieces involved in quantifying wildfire risk are
spatially resolved estimates of wildfire likelihood and
intensity, maps of highly valued resources and assets
(HVRAs), and characterizations of HVRA suscep-
tibility to fire.(5) Analytically, the quantification of
wildfire risk can be separated into exposure analy-
sis, which explores the degree to which HVRAs will
be exposed to risk factors (fire likelihood and in-
tensity), and effects analysis, which explores the po-
tential consequences (loss or benefit) to the HVRA
at various exposure levels.(6) In this article, we fo-
cus on a single HVRA, human populated areas, and
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describe a novel exposure analysis intended to facili-
tate efficient wildfire risk mitigation at the wildland-
urban interface (WUI).

Wildfire risk to human populated areas is driven
by environmental and anthropogenic factors that in-
fluence both the wildfire hazard itself, as well as
the exposure to and effects on human communities.
Past fire suppression has led to increased fuels ac-
cumulation, which can increase the magnitude and
likelihood of environmental and human impacts.
Land-use patterns can inflate risks by increas-
ing human-caused ignitions (e.g., agricultural burn-
ing and increased human access to remote areas),
altering fuel conditions (e.g., agricultural land aban-
donment, increased fuel accumulations), and increas-
ing exposure to wildland fires (e.g., exurban resi-
dential development and recreation road access to
remote areas allows for humans to occupy areas pre-
viously difficult to access). Changing climate is likely
to further inflate risks by increasing wildfire activ-
ity in many areas around the globe.(7) Given these
potentially increasing risk factors, damaging wildfire
events are likely to continue into the future.

Beyond the location of human development, the
two critical factors that determine wildfire risk to
human populated areas are the ignition location on
the landscape, and the underlying potential for fire
spread on the landscape. The locations of wildland
fire ignitions vary across a landscape due to a number
of factors, including human development, lightning-
prone landforms (e.g., mountain ridges), recreation
access, and proximity to roads.(8–10) Where large fires
occur over large landscapes, the influence of igni-
tion patterns on wildfire likelihood (burn probabil-
ities) is minimal,(11) especially under extreme fire
weather events.(12) However, ignition location pat-
terns play a larger role in burn probabilities where
fires are smaller in size.(13,14) Population density and
area burned from wildland fire ignitions are often
inversely related,(15) meaning that the higher the
population density, the smaller the fires, given an
ignition. This is often due to the increase in fire
suppression efforts and the landscape fragmenta-
tion found in proximity to human development.(12,16)

In human-dominated, fragmented landscapes, the
human-caused ignitions tend to be more clustered
than lightning-caused ignitions.(17–20) Even small fires
in proximity to high-density populations can result in
greater direct exposure to human populations than
larger, remote fires.

Although ignitions are the source of the haz-
ard, it is the spread of the ignition that ultimately

causes the greatest effects on human and natural re-
sources. Frequently, damaging wildland fires burn
the majority of their acreage during one or two
burn periods, under severe weather events, through
rapid fire spread.(21,22) It is during these events that
high winds and dry fuel conditions make suppres-
sion of wildland fires difficult and dangerous, even
in urban settings where response times are shortest.
Therefore, it is critical to understand where on the
landscape a potential ignition, under severe weather
events, could spread and cause the highest expo-
sure to human populations. Recent and emerging
improvements in wildfire risk assessment tools(23–26)

have greatly facilitated this task, allowing for the cou-
pling of spatially explicit fire spread and burn prob-
ability modeling with geospatial representations of
human development.(4,27,28) Although these and re-
lated modeling approaches capture the spatial influ-
ences of ignition location and landscape fire spread
potential, results are typically aggregated across sim-
ulated fires and summarized at the raster level, which
provides limited information regarding sources of
risk.(2) The use of individual simulated fire perime-
ters as the unit of analysis provides important infor-
mation masked by pixel-level analyses,(3,29) such as
risk transmission. Risk transmission is the transfer of
risk originating in one place or landscape to a spa-
tially or temporally separate landscape. Systematic
examination of ignition locations and fire perime-
ters can identify risk transmission within and across
landowners.(30)

The issue of risk transmission into human pop-
ulated areas is particularly salient for federal land
management agencies, such as the U.S. Forest Ser-
vice (USFS), that annually invest hundreds of mil-
lions of dollars into actions to mitigate wildfire risk.
The National Fire Plan (NFP) developed in 2001 pro-
vided a substantial boost in funding to hazardous fuel
reduction programs on forested lands in an effort to
reduce the risk of wildland fires. A primary objective
of the NFP and the Healthy Forest Restoration Act
of 2003 (Public Law 108–148, section 103) is to re-
duce the risk from wildfires in the WUI. More recent
efforts, such as the National Cohesive Wildland Fire
Management Strategy, have focused on creating fire-
resilient landscapes and fire-adapted communities to
minimize losses. For fuel treatments on public lands
to be effective at attaining these objectives and mini-
mizing WUI risk, the treatments must be strategically
located to interact with wildfire, and when tested by
fire must reduce the likelihood and/or intensity of fire
within the WUI. Often, private landowners control
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large tracts of land in between public lands and the
more densely populated WUI lands.(31) Not only are
these private lands potential sources of wildland fires,
they can facilitate the spread of fires igniting in re-
mote public lands, across a landscape, to more heav-
ily populated lands.(2) It is therefore an essential first
step in WUI risk mitigation that transmission path-
ways be identified in order to locate areas where in-
vestments on public or private land may or may not
be cost effective at measurably reducing WUI risk.

The objective of this study is to spatially identify
WUI risk transmission pathways and locate the areas
of highest exposure of human populations to wild-
land fires under severe, but not uncommon, weather
events. We quantify varying levels of exposure in
terms of population potentially affected by simulated
fire perimeters, and tie the population affected back
to the ignition location. The spread of a fire from
an ignition point, through a populated area, identi-
fies the risk transmission pathways, while the igni-
tion point itself identifies the source of the risk. The
amount of population affected by each fire perimeter
is the level of exposure. We aim to determine if the
land ownership designation of wildfire ignitions pro-
vides differential levels of exposure to human popu-
lations, and if there is a high level of risk transmission
among and between land ownerships. We hypothe-
size that wildland fires ignited on private land will
result in higher levels of exposure to human popu-
lations than federal ignitions, and that risk transmis-
sion levels will be greatest from private to private
landowners. As a case study location we focus on
the Front Range of Colorado, USA, a densely pop-
ulated fire-prone region that has experienced recent
high-loss wildfire events. We use probabilistic fire
simulation modeling to address where fire ignitions
spread and lead to exposure of human populations,
and to quantify the role that federal lands play in
that transmission of exposure. We do this by simulat-
ing potential wildfire perimeters under severe wild-
fire weather and intersecting these perimeters with
maps of human population to determine the num-
ber of people who may be directly impacted by the
simulated events, from both federal and nonfederal
ignitions. Additionally, we generate a map of popu-
lation affected by fire ignitions to identify geographic
hotspots of potential activity. This type of analysis is
necessary for promoting a realistic vision of shared
responsibility across landowners and homeowners,
and for identifying the most cost-effective suite of ac-
tions to reduce WUI loss.(32)

2. METHODS

2.1. Study Area and Fire History

For this study, we investigate the likelihood that
short-duration burn events under severe fire weather
conditions will impact human populations. While the
location and density of human structures may play a
larger role in determining the value of infrastructure
at risk and the suppression response, fire manage-
ment priorities are first and foremost to protect hu-
man life and safety. Numerous federal and state-level
risk assessments have used population data, such as
Landscan USA,(33) since it balances the first prior-
ity of human life and safety with second priorities of
property.(4,34,35) Since more than 85% of Colorado’s
population lives in the Front Range Urban Corri-
dor, we restricted our analysis to this area (Fig. 1).
The Front Range in Colorado is the eastern-most
mountain range of the Rocky Mountains, stretch-
ing from Pikes Peak to the Colorado/Wyoming state
line. The Front Range urban corridor consists of 16
counties that span this mountain range and follows
the I-25 corridor from Cheyenne, Wyoming in the
north to Pueblo, Colorado in the south. We further
restricted our study area to the 11 counties within
this corridor that lie within the state of Colorado, and
contain National Forest lands (National Grasslands
administered by USFS are excluded). Five counties
(Adams, Arapahoe, Denver, Ebert, and Weld) were
excluded due to lack of National Forest lands, and
two counties (El Paso and Pueblo) were truncated
to only include the western portion of the coun-
ties that contain forested and mixed forest, shrub,
and grass landscapes. A similar analysis for homo-
geneous grasslands would be informative for those
landscapes; however, the vastly different fire behav-
ior, as well as different suppression response and ef-
fectiveness, would make it difficult to compare the
two landscapes side by side. The resulting study area
comprises 3 million hectares of lands under various
ownerships, including numerous federal agencies (1.2
million ha, 41%) as well as state (81,590 ha, 3%),
county and municipal (56,119 ha, 2%), and private
lands (1.6 million ha, 54%; Fig. 1). State, county,
and municipal lands were grouped into the class
state/local for this study. This mix of ownerships al-
lowed us to investigate the relationship between fire
ignition location and subsequent fire spread into pop-
ulated areas.

The total population residing within the study
area is 2.37 million people according to the Landscan
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Fig. 1. The counties within the Front Range Urban Corridor, with land ownership, our truncated study area, and the recent large fire history
within the study area.

2013 nighttime population data set. The population
is clustered around the major urban centers of Col-
orado Springs, Pueblo, Boulder, and Fort Collins.
The vast majority (98%) of human population within
the study area resides on private lands and, therefore,
the risk transmission we summarize here will pri-

marily be from federal or state/local lands to private
lands or from private lands to private lands. The ex-
ception to this is with the residents of military bases
on Department of Defense lands; this accounts for
1% of the population. In addition, private inholdings
occur on lands administered by the Forest Service
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and this population accounts for the remaining 1%.
Private inholdings are common in Colorado, and are
primarily due to old mining claims, as well as the rail-
road checkerboard inholdings found elsewhere in the
western United States. These private inholdings are
categorized as federally administered, but are actu-
ally privately owned in the study area. Therefore, re-
sults from private inholdings are included in the pri-
vate ownership class, but also analyzed separately as
a federally administered unit.

In the Front Range forests, the higher eleva-
tion lodgepole pine (Pinus contorta), Douglas fir
(Pseudo-tsuga menziesii), and ponderosa pine (Pinus
ponderosa) mixed forests have historically been
characterized by mixed-severity fire regimes, and
the lower elevation ponderosa pine dominant forests
have historically been predominately low-severity
fire regimes.(18) Fire suppression in these areas has
changed the historical fire regimes, especially in
the lower elevation ponderosa pine forests, where
fire exclusion has increased fuel loads, increasing
the potential for higher severity fires.(36) In recent
decades, the Front Range Mountains have expe-
rienced rapid growth in human development into
the WUI, and this trend is likely to continue in
the next 30 years.(37) Human development in and
around fire-prone lands has created circumstances
in which wildland fires increasingly result in ad-
verse impacts on human lives and highly valued
resources, as recently demonstrated by the series
of highly damaging wildfire events in this area. The
Hayman Fire of 2002 is the largest fire in Colorado’s
recorded history. It consumed over 55,850 ha of dry
fuels northwest of Colorado Springs and destroyed
132 homes.(36) Five firefighters lost their lives in
a vehicle accident and one smoke-related civilian
death was attributed to the fire. The Fourmile
Canyon Fire burned in 2010 outside of Boulder
Colorado; 168 homes were lost and damages totaled
over US$220 million.(38) More recently in 2012,
the Lower North Fork Fire claimed 16 homes and
three lives. That same year, the High Park Fire
outside of Fort Collins and the Waldo Canyon Fire
adjacent to Colorado Springs burned 259 and 346
homes, respectively. Insurance claims for the Waldo
Canyon totaled US$352.6 million (http://gazette.
com/damage-assessment-grows-for-black-forest-fire/
article/1503565). The following year, and within
eight miles of the Waldo Canyon Fire, the Black
Forest Fire occurred destroying 464 homes, resulting
in two civilian deaths and over US$300 million in
insurance claims to date.

While the specifics of each of these fires are
slightly different, they all share some characteristics
in terms of fire weather and fuel loadings. These fires
all burned under dry and windy conditions, result-
ing in a few short-duration burn periods of rapid fire
spread. For example, in 2002 while Colorado was in
an extended drought, the Hayman Fire burned over
24,280 ha in one day during an extreme wind event
involving gusts of up to 82 km/h.(36) The Fourmile
Canyon Fire, similarly, burned the majority of its
acres during the first day, when relative humidity and
fuel moisture content were extremely low and winds
were gusting to 64 km/h. Of the 168 homes lost in
the Fourmile Canyon Fire, 162 were lost during this
first 12-hour burn event.(38) High winds, accompa-
nied by decreasing relative humidity, was the primary
cause of Lower North Fork Fire escaping prescrip-
tion and aggressive initial attack, leading to rapid fire
spread and subsequent losses. The Waldo Canyon
Fire also had an extreme burn period that lasted ap-
proximately 12 hours and burned the majority of the
homes, with wind gusts of up to 105 km/h.

2.2. Wildfire Simulation

To simulate short-duration burn probabilities we
utilized a command line form of FLAMMAP, called
“Randig.”(39) Randig works by placing a large num-
ber (>10,000) of random ignitions on a landscape.
Each ignition grows in accordance with FLAMMAP
fire spread logic as implemented by the minimum
travel time algorithm,(40) using the Rothermel spread
equations and the Scott and Reinhart crown fire ini-
tiation algorithm.(41) The short-duration burn peri-
ods are simulated under constant weather conditions,
assuming no suppression effect. This assumption is
appropriate for modeling extreme wildfire spread
events, especially in forested landscapes where fire
weather and fire behavior can overwhelm suppres-
sion resources.(42)

In order to investigate the fire spread poten-
tial for the short-duration fires typical of high-loss
events on the Colorado Front Range, we used four
representative severe weather scenarios. We devel-
oped scenarios typical of historically significant fire
events based upon analysis of historical fire weather
data obtained from Remote Automatic Weather Sta-
tions (RAWS), located in the Front Range. These
scenarios are defined by a given windspeed, direc-
tion, burn period duration, and corresponding fire
spotting probability (Fig. 2). The probability of each
scenario being selected is based on the historically
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Fig. 2. Example Randig fire perimeter and ignition location over-
laid with Landscan population. The possible fire weather scenarios
are shown in the table, with the selected weather scenario corre-
sponding to the perimeter shown.

observed windspeed and direction from the RAWS
data. Windspeeds and directions more common in
the historical record have a higher probability of be-
ing selected.

For our surface and canopy fuels and topo-
graphic landscape information, we resampled the
LANDFIRE 2010 (LF 1.2.0) data set,(43) from its
native resolution of 30 m up to the fire modeling
resolution of 90 m, using the nearest neighbor tech-
nique. LANDFIRE data are commonly used in wild-
fire simulation modeling due to the fact that they
are nationally available, standardized, and updated
regularly to adjust for disturbances such as wildfires,
fuel treatment, and urban development.(44) The data
layers needed to create the required landscape file
for Randig are elevation, slope, aspect, fuel model,
canopy cover, canopy base height, canopy height,

and canopy bulk density. We clipped each resam-
pled raster to a 10 km buffer around the study area.
This buffer allows for fires burning on the edge of the
study area to burn off the lands, thereby minimizing
potential edge effect on simulated fire perimeters.

Wildland ignitions tend to follow patterns re-
lated to land-use, human access, and topographic
features; therefore, we leveraged the historical fire
occurrence database to determine historical density
patterns of ignitions within the study area. We ob-
tained fire occurrence history between 1992 and 2011
for the study area from the National Fire Occurrence
Database,(45) a comprehensive database that includes
ignition locations across ownership, regardless of fi-
nal fire size. According to this database, a total of
5,194 ignitions burned 112,645 ha within the study
area, from 1992 to 2011. Approximately half of these
ignitions were located on federal lands (2,703), with
the remaining located on private (2,346), local (54),
or state (44) lands. We calculated an ignition den-
sity grid (IDG) based on the historical fire occur-
rence ignition patterns within a 10 km buffer of the
study area, using kernel smoothing.(46) The left panel
of Fig. 3 shows the IDG and the recent ignition loca-
tions within the study area. We simulated 50,000 igni-
tions located probabilistically according to the IDG.
The outputs from the simulation model include in-
dividual fire ignition locations, fire perimeters, and
an overall burn probability grid. The burn probabil-
ity grid is simply the number of times a pixel burned
divided by the number of simulations.

2.3. Identifying Wildfire Exposure Levels to
Human Populations

We used the 2013 Landscan USATM 3 arc-second
(�90 m2) nighttime residential population distribu-
tion data set(33) as our population layer in order to
assess the exposure from wildfire to human popu-
lations. The basis of this data set is the 2010 Cen-
sus population counts by housing blocks—the small-
est unit containing population information from the
U.S. Census Bureau. The nighttime residential pop-
ulation layer attempts to locate people in their resi-
dences, and therefore is more applicable to fire risk
to residential communities than the daytime popula-
tion layer, which attempts to locate people at their
place of employment. Landscan uses “intelligent”
daysmetric mapping to locate the lands most likely
to contain human populations as constrained by cen-
sus housing blocks. Since large census blocks often
have populations concentrated within a small area
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Fig. 3. A comparison of the study area’s historical ignition patterns and ignition density grid (left), fuel model groups (center), and simulated
burn probabilities from Randig (right)

within the block, assuming an even density of popu-
lation is not appropriate.(47) The Landscan algorithm
uses additional information, such as lights at night,
roads, and topography, to identify the lands within
the census block that are most likely to contain the
population of the block. Since the raw Landscan data
set is in a geographic projection where area units are
not equal, population density counts are not feasible.
Therefore, we converted the Landscan grid to points,
projected these points to Albers equal area projec-
tion, and reconverted to a 90 m grid by summing
up the population counts of the points in each pixel.
This resulting grid is appropriate for population den-
sity counts since each pixel represents the same areal
unit.

We overlaid Randig perimeter outputs with the
Landscan population density grids to determine the
level of exposure by calculating the total absolute

population (aPOP) directly exposed (i.e., residing in)
by each fire perimeter (Fig. 2). Various factors can
cause populations to be exposed indirectly from wild-
land fires, such as through the spread of smoke or
postfire impacts on drinking water quality. However,
we focused only on direct exposure to human pop-
ulations. For computational efficiency purposes, we
performed these calculations using the RMRS Raster
Utility’s “zonal stats” function.(48) Each simulated
fire was also attributed to the land ownership class
and the county within which it ignited. Our hypoth-
esis was that fires igniting on private lands would re-
sult in higher levels of exposure than ignitions on fed-
eral or state/local lands. The federal, state/local, and
private land ownership classes were analyzed using a
one-way ANOVA to determine if statistical differ-
ences in population exposure levels occur between
the groups.
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2.4. Spatially Identifying Sources of High-Risk
Transmission

We define areas of high-risk transmission as
those where ignitions under severe fire weather have
a potential to rapidly spread onto lands that are oc-
cupied by people. We quantify varying levels of ex-
posure in terms of population potentially exposed by
simulated fire perimeters (aPOP), and tie the aPOP
back to the ignition location. The spread of a fire
from an ignition point, through a populated area,
identifies the risk transmission pathways, while the
ignition point itself identifies the source of the risk.
We generate a map of risk transmission sources by
exposure level, and calculate county-level totals of
the aPOP by ownership class, as well as statistics
on the factors that contribute to the total aPOP.
These factors include total population, county size
(hectares), propensity for fire spread (burn probabil-
ity), and total fire load (number of ignitions). In addi-
tion, we summarize these data by federal administra-
tive units. Finally, we visually compare our simulated
results with recent high-loss wildland fire events on
the Front Range.

3. RESULTS

3.1. Wildfire Simulation and Burn Probability

Using the Randig outputs, we found the mean
burn probability for the study area to be 0.0012, with
a minimum of 0.00002, a maximum of 0.00624, and
a standard deviation of 0.0012. The burn probabili-
ties tend to covary across the landscape with the fuel
model groups (Fig. 3). In particular, areas of grass
and shrub fuel models tend to have higher burn prob-
abilities than timber fuel models. Grass and shrub
areas tend to have larger simulated fire perimeters
due to faster fire spread rates compared to timber
fuel models and the fact that suppression efforts that
are typically more effective in grass and shrub fuel
models are not modeled in Randig. Notably, most
of these grass fuel models and high burn probabili-
ties are found on private lands, with the exception of
the Department of Defense lands in the southeastern
portion of the study area. Also, Forest Service lands
of the Pike and San Isabel National Forests, south of
Lakewood, CO, have high burn probabilities in com-
parison to other federal lands. This may be a function
of not only fuel configuration, but also a higher den-
sity of ignitions as shown in the ignitions density grid
(Fig. 3).

In addition to a burn probability surface, Randig
also outputs information related to ignition loca-
tion, fire size, and fire perimeter. Of the 50,000 sim-
ulated fires, 44,402 of the ignitions are within the
study area, and the remaining ignitions are located
in the 10 km buffer used to accommodate edge ef-
fects for the burn probabilities. Results throughout
the remainder of the study only refer to the 44,402
ignitions located within the study area. The simu-
lated fires ranged in size from 1.8 to 20,719 ha. The
mean fire size was 3,919 ha, and the median was
2,853 ha. Approximately half of these fires ignited on
private land (53%), 14% (7% of the total) of which
ignited on private inholdings within federal admin-
istrative boundaries. Fires igniting on private lands
were larger (mean 4,800 ha and median 3,804 ha)
than those igniting on federal lands (mean 2,657 ha
and median 1,487 ha). Similar to the burn probabili-
ties, the increase in fire size on private lands can be
attributed to the grass and shrub fuel models that
are found in these areas. Even though wildfire sup-
pression tends to have a higher success rate in the
grass fuels than in timber fuels, the extreme weather
conditions under which these ignitions were modeled
would make suppressing these fires difficult and dan-
gerous due to the rapid spread rates and increased
spotting.

3.2. Identifying Wildfire Exposure Levels to
Human Populations

Across all simulations, an average of 1,638 peo-
ple were affected per fire, given an ignition anywhere
on the landscape. The absolute population exposed
(aPOP) from an individual fire perimeter ranged
from 0 to 52,573, with a median of 109. Our hypoth-
esis was that fires igniting on private lands would
result in higher levels of exposure than ignitions on
federal or state/local lands. We first calculated the
correlation between fire size and aPOP to ensure that
aPOP was not simply a function of simulated fire size.
The Pearson’s correlation coefficient was 0.28, indi-
cating that aPOP was only weakly correlated with fire
size. In addition, the fires with the highest aPOP are
in the middle of the fire size distribution, with the
largest fires having lower aPOP values, suggesting
that landscape areas capable of supporting very large
fire growth are geographically separate from areas of
high population density. Not surprisingly, private ig-
nitions accounted for higher levels of population ex-
posed (mean 2,347, median 388) than federal igni-
tions (mean 856, median 18) or state/local ignitions
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(mean 725, median 38) due, in part, to the proximity
to populated areas. While there were no significant
differences between federal and state/local levels of
exposure (one-way ANOVA, F = 1.5388, p = 0.22),
there were significantly higher levels of population
exposure from private ignitions, versus federal (one-
way ANOVA, F = 1594.1, p < 0.001), and state/local
ignitions (one-way ANOVA, F = 206.87, p < 0.001),
suggesting that ignitions on private lands do produce
different levels of exposure to populations compared
to federal and state/local.

3.3. Spatially Identifying Sources of High-Risk
Transmission

A map that visulalizes the spatial pattern of risk
transmission sources by exposure level is necessary to
identify hot spots of potental risk transmission. We
created a raster where each pixel was assigned the
aPOP from the ignition that resided within the pixel,
by ownership (Fig. 4). Since we found no significant
difference between federal and state/local ownership
classes, we combined the classes for the remainder of
the analysis into the federal class. If more than one
igniton was located within a pixel, the ignition with
the maximum value of aPOP was used for visualiza-
tion of risk transmission sources. Areas in white con-
tained no random ignition for that particular own-
ership class. The aPOP by ignition varies across the
landscape, with the highest clusters surrounding the
large urban areas of Colorado Springs, Pueblo, and
south of Lakewood (Fig. 4). This is particularly true
of private ignitions. Federal ignitons with the high-
est aPOP tend to occur in the area surrounding Col-
orado Springs.

At the county level, 35% of the total study
area’s aPOP comes from ignitions starting in El Paso
County, 35% from Douglas County, 14% from Jef-
ferson County, and 16% is distributed among the re-
maining eight counties. Fig. 5 displays the percent-
age that each county contributes to the total study
area’s aPOP, shown in shades of black. A total of
25% of the total study area’s aPOP is from ignitions
starting on federal lands while 75% is from ignitions
starting on private land. The aPOP is broken down
by ownership class in Fig. 5, where the black is fed-
eral lands and gray is private lands. El Paso County
has the highest percentage of the total aPOP from
fires igniting on federal lands—14% of the total—and
Douglas County has the highest percentage of total
aPOP from fires igniting on private lands (32%). In
terms of the relative proportion of each county’s to-

tal aPOP coming from fires igniting on federal lands,
El Paso and Park counties have the highest with 41%
and 38%, respectively.

Under a completely random process, we would
expect that the proportion of each county’s aPOP
would be proportional to county-level population
densities. However, there are many complex spa-
tial interactions that influence the spatial pattern of
aPOP. These factors include the interaction of to-
tal fire load (i.e., number of ignitions), the general
propensity for fire spread (i.e., mean burn probabil-
ity), and population density. In Fig. 5, we show that
these factors contribute to the aPOP in different ways
for each county. For example, while Park County
contains the highest pecentage of the total fire load,
and one of the highest burn proabilities, the aPOP is
one of the smallest, due to the low density of people
in proximity to these flammable fuels. Douglas and
El Paso counties account for the highest aPOP (35%
each); however, in Douglas County this is driven by
high burn probabilies, and in El Paso this is driven
by high population. It is not simply the presence of
high burn probability and high population anywhere
within a county that results in a high aPOP, however.
Rather it is the spatial proximity and/or overlap of
the two. For example, Jefferson County contains the
highest percentage of the population (25%), and a
relatively high BP, however it only accounts for 12%
of the aPOP. It is this complex spatial interaction of
factors that requires the use of the spatial modeling
methods we performed in this study, rather than a
more simple statistical modeling approach.

There are 10 federal administrative units within
the study area, including two National Forests, three
military bases, two BLM districts, two National
Parks/Monuments, and a National Wildlife Refuge.
Private inholdings on the two National Forests are
also considered units of federally administered lands,
for a total of 12 units. Of the total aPOP from igni-
tions on federal lands or private inholdings, the Pike
and San Isabel National Forests account for 51%, or
13% of the total aPOP for the entire study area (Ta-
ble I). Collectively, the Department of Defense lands
account for 27% of the aPOP from federal ignitions
and 7% of the study area’s total aPOP. Private in-
holdings account for 13% of the aPOP from feder-
ally administered lands, and 3% of the total study
area’s aPOP. On a per fire basis, fires igniting on the
Department of Defense (DOD) Air Force Academy
lands affect the largest amount of people, with an av-
erage of 10,122 people affected per fire, which is 10
times higher than the Pike and San Isabel National
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Fig. 4. Spatially identified sources of risk transmission by various exposure levels of aPOP, for federal (left) versus private (right) ignitions.

Forests. This is in part due to the fact that people re-
side on these DOD lands, and in part due to the high
burn probabilities found on these lands (Fig. 3).

3.4. Comparison of Results with Recent
Wildland Fires

We compared the simulated perimeters of high-
impact fires to actual fire perimeters from the re-

cent past. Fig. 6 shows the location of four highly
damaging fires within the past few years in the Col-
orado Front Range. These are the Black Forest,
Waldo, Fourmile Canyon, and High Park fires. The
Fourmile Canyon and High Park fires occurred in
areas with relatively low aPOP affected from se-
vere weather events. This figure highlights the fact
that under similar weather conditions, an ignition in
many other areas on the landscape had the potential



Wildfire Risk Transmission 11

0%

5%

10%

15%

20%

25%

30%

35%

40%
Ac

re
s

Ig
ni
tio

ns BP
Po

pu
lat
io
n

aP
O
P

Ac
re
s

Ig
ni
tio

ns BP
Po

pu
lat
io
n

aP
O
P

Ac
re
s

Ig
ni
tio

ns BP
Po

pu
lat
io
n

aP
O
P

Ac
re
s

Ig
ni
tio

ns BP
Po

pu
lat
io
n

aP
O
P

Ac
re
s

Ig
ni
tio

ns BP
Po

pu
lat
io
n

aP
O
P

Ac
re
s

Ig
ni
tio

ns BP
Po

pu
lat
io
n

aP
O
P

Ac
re
s

Ig
ni
tio

ns BP
Po

pu
lat
io
n

aP
O
P

Ac
re
s

Ig
ni
tio

ns BP
Po

pu
lat
io
n

aP
O
P

Ac
re
s

Ig
ni
tio

ns BP
Po

pu
lat
io
n

aP
O
P

Ac
re
s

Ig
ni
tio

ns BP
Po

pu
lat
io
n

aP
O
P

Ac
re
s

Ig
ni
tio

ns BP
Po

pu
lat
io
n

aP
O
P

Boulder Clear Creek Douglas El Paso Fremont Gilpin Jefferson Larimer Park Pueblo Teller

private

federal

Fig. 5. This figure shows a comparison of county-level population exposed (aPOP), as a percentage of the total project area’s aPOP, broken
down by federal (black) versus private (grey) ownership. In addition, the proportion of factors contributing to the results (county size
[acres], ignition loadings [ignitions], propensity for fire spread [BP]) are shown and broken down by federal (darker colors) versus private
(lighter colors) ownership as well.

to expose more people than either of these two
fires. The Waldo Canyon and Black Forest fires oc-
curred in an area we identify as having high popu-
lation exposure. We mapped the simulated perime-
ters of the three highest impact fires by ownership
class (private, Forest Service, and other federal) in
Fig. 6. These six fires are shown in more detail in
the right-hand side of Fig. 6. The highest impact
fire that ignited on private land was located approxi-
mately 2 km east of the Waldo Canyon Fire, just out-
side of Colorado Springs, and impacted over 52,000
people. The highest impact fire on federal lands oc-
curred on Department of Defense lands just south
of Colorado Springs, and affected 26,670 people. In-
terestingly, the highest impact Forest Service fire ig-
nited within the Waldo Canyon Fire perimeter; how-
ever, the simulated fire primarily burned outside the
Waldo Canyon Fire perimeter under a strong east-
erly wind (Fig. 6), and impacted over 23,000 people.
Since the LANDFIRE fuels layers are from 2011, the
LANDFIRE fuels were not yet altered to account for
the fuel consumption from the Waldo Canyon Fire.
Our analysis shows that this area is still highly suscep-
tible to high impacts from wildfire. A future analysis
incorporating burn severity and fuel changes could
show the effects that the Waldo Canyon Fire might
have on subsequent fire spread potential in the area.

4. DISCUSSION

This work illustrates the application of wild-
fire simulation modeling to quantify the exposure
of residentially developed populated areas to short-
duration wildland fires during severe fire weather
conditions. These results can be useful for strategic
planning efforts to address risk mitigation, especially
when prioritization is necessary due to limited funds
and available resources. For example, our results
highlight areas on the Colorado Front Range, where
if an ignition were to occur under severe fire weather,
expedited measures should be taken to extinguish
the fire before spread occurs or, if failing that, emer-
gency evacuation and response may be warranted.
This could be accomplished by prepositioning fire
suppression resources during expected extreme fire
weather.

The results can be useful in a prefire season plan-
ning context as well, since they highlight areas by
ownership that have an elevated potential for be-
ing the source of a highly damaging wildland fire
event. Some mitigation actions that could be taken
prefire season are performing effective fuel treat-
ments that will allow for increased initial attack suc-
cess, and increasing fire prevention efforts in ar-
eas of elevated risk. Researchers have shown that
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Table I. Summary of Federal Administrative Units’ aPOP

% of % of Mean aPOP/ % of Total % of Total
Owner Unit Federal Hectares Federal Ignitions Ignition Federal aPOP Project Area aPOP

Bureau of Land
Management

Colorado-Front
Range-Royal
Gorge

6.09% 11.94% 213 3.02% 0.78%

Bureau of Land
Management

Colorado-
Northwest-
Kremmling

0.35% 0.23% 2 < 0.00% < 0.00%

Department of
Defense

Air Force Academy 0.24% 0.99% 10,122 11.94% 3.09%

Department of
Defense

Fort Carson 1.78% 4.25% 2,978 15.04% 3.89%

Department of
Defense

Peterson AF Base 0.01% 0.04% 3,020 0.13% 0.03%

National Park
Service

Florissant Fossil
Beds National
Monument

0.08% 0.40% 810 0.38% 0.10%

National Park
Service

Rocky Mountain
National Park

2.18% 2.97% 44 0.15% 0.04%

U.S. Fish & Wildlife
Service

Rocky Flats
National Wildlife
Refuge

0.06% 0.18% 3,065 0.65% 0.17%

U.S. Forest Service Arapaho &
Roosevelt
National Forests

32.04% 18.35% 203 4.42% 1.14%

Private Inholdings Arapaho &
Roosevelt
National Forests

3.71% 7.06% 282 2.36% 0.61%

U.S. Forest Service Pike & San Isabel
National Forests

51.10% 46.37% 934 51.44% 13.31%

Private Inholdings Pike & San Isabel
National Forests

2.38% 7.23% 1,218 10.46% 2.71%

awareness of risk motivates landowners to mitigate
their risk.(49–51) Therefore, by quantitatively produc-
ing maps that identify the areas of highest risk trans-
mission, landowners may be more motivated to mit-
igate the risk from their property if they can visu-
ally recognize their lands as a source of wildfire risk.
In addition, development is likely to continue in this
area. These results highlight areas that can benefit
from fuels mitigation efforts pre-development and
well-designed safety measures for homeowners and
firefighters, such as increased egress options, fire hy-
drants, and building with fire resistant materials.

Since risk transmission is not just about the ig-
nition source, but also about the subsequent spread
onto adjacent lands, multiple landowners are likely
to be exposed and, therefore, mitigation efforts must
occur across boundaries. Simulation models suggest
that random patterns of fuel treatments do not be-
gin to restrict fire movement until 15–20% of the
area is treated; however, if treatments are oriented

specifically to impede fire movement the effect is re-
alized at a lower treatment area.(52) The first step
in identifying where strategically located fuel treat-
ments may be the most effective at reducing human
exposure is to identify where on the broader land-
scape a high amount of exposure is present. Our re-
sults have done this for the Colorado Front Range;
however, our methods can be extended to other land-
scapes to identify the areas with the highest sources
of potential population exposure from wildland fires.

The next steps will necessarily involve a more de-
tailed analysis at the local project level in areas of el-
evated exposure, to see how and if treatments could
result in a reduction in exposure. The data need to
conduct this research at local levels would ideally in-
clude better information on local fuels and ground
cover, especially urban fuels surrounding homes
and the location and type of fuel treatments per-
formed on the ground. Information on actual hous-
ing location, as well as the number and associated
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Fig. 6. Four historical and three simulated high-impact wildfire perimeters, overlaid with aPOP.

sociodemographic characteristics of people residing
in each house, would also provide a more complete
picture of the community impacts from potential
wildland fires.

Future research could build upon this work by
addressing modeling limitations and expanding the
scope of analysis. Fire simulations could be rerun
with fuel and vegetation conditions updated to re-
flect recent fire events not yet incorporated into the
LANDFIRE data set, as well as to reflect alterna-
tive hypothetical fuel treatment scenarios. Modeling
fire-to-home ignition, home-to-home ignition, and
home destruction processes greatly increases mod-
eling complexity and data demands, but could po-
tentially improve estimates of likely wildfire-related

loss. Modeling the human life and safety impacts
is potentially even more complex, although useful
proxies could include assessing egress routes and rel-
ative evacuation difficulty. In addition, the effects
of wildland fires on human populations extend be-
yond the direct impacts of home loss and popu-
lation displacement. The impacts from smoke on
human health can be far reaching; however, cur-
rently methods to use smoke dispersion models in
a probabilistic, prefire context are not yet avail-
able since many of the models rely on real-time
remotely sensed data of smoke and short-term fore-
casted winds.(53) Future research on postfire de-
bris flows and sediment loadings on drinking wa-
ter supplies would further round out the analysis of
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effect to human populations. Continued attention to
understanding the factors driving wildfire exposure
and risk will ideally lead to improved and efficient de-
sign of wildfire risk mitigation strategies, across land
managers and affected communities.
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