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Abstract

Fire severity is a key driver shaping the ecological structure and function of

North American boreal ecosystems, a biome dominated by large, high-intensity

wildfires. Satellite-derived burn severity maps have been an important tool in

these remote landscapes for both fire and resource management. The conven-

tional methodology to produce satellite-inferred fire severity maps generally

involves comparing imagery from 1 year before and 1 year after a fire, yet envi-

ronmental conditions unique to the boreal have limited the accuracy of result-

ing products. We introduce an alternative method – the ‘hybrid composite’ –
based on deriving mean severity over time on a per-pixel basis within the

cloud-computing environment of Google Earth Engine. It constructs the post-

fire image from satellite data composited from all valid images (i.e., clear-sky

and snow-free) acquired in the time period immediately after fire through the

early growing season of the following year. We compare this approach to

paired-scene and composite approaches where the post-fire time period is from

the growing season 1 year after fire. Validation statistics based on field-derived

data for 52 fires across Alaska and Canada indicate that the hybrid composite

method outperforms the other approaches. This approach presents an efficient

and cost-effective means to monitor and explore trends and patterns across

broad spatial domains, and could be applied to fires in other regions, especially

those with frequent cloud cover or rapid vegetation recovery.

Introduction

Wildfire is the dominant disturbance agent in North

American boreal forests (Kasischke et al., 2010; Randerson

et al., 2006), a biome of over 6 million km2 containing the

highest proportion of intact forest on Earth (Potapov

et al., 2017; Venier et al., 2018; Watson et al., 2018; Wells

et al., 2020). The ‘severity’ of wildfires, defined here as the

degree of fire-induced ecological change to vegetation, dead

biomass, and soil (Eidenshink et al., 2007; Kolden &

Rogan, 2013), fundamentally shapes the structure and

function of boreal ecosystems at a range of temporal and

spatial scales. For example, fire severity influences

landscape-level vegetation patterns, post-fire successional

trajectories, permafrost dynamics, soil erosion, carbon

dynamics, wildlife habitat, and subsistence resources (Balshi

et al., 2007; Johnstone et al., 2010; Minsley et al., 2016;

Thom & Seidl, 2016; Whitman, Whitman, et al., 2019).

Because fire severity plays such a pivotal role in boreal for-

ests, spatially explicit data describing severity patterns are

essential to our understanding of ecological processes in

these fire prone ecosystems. Much of the North American

boreal forest, however, lies in remote and inaccessible areas

where wildfires are not easily monitored on the ground

(Duffy et al., 2007; Hawbaker et al., 2017). Remote sensing

offers repeat observations over multi-decadal time periods

and provides a powerful tool for monitoring and studying

fire across the vast boreal biome.
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Multispectral imagery, such as Landsat data, has been

widely used in research and management to characterize

fire effects due to its ability to isolate signals directly

resulting from fire (Chen et al., 2021). Spectral imagery

from before and after a fire can be compared and inte-

grated into indices (e.g. the differenced normalized burn

ratio, dNBR) that detect surface changes, such as vegeta-

tion mortality, char, moisture loss, and soil erosion

(White et al., 1996). Related, ground-based observations

(e.g. the Composite Burn Index, CBI) have demonstrated

the reliability of such remotely sensed indices within

many ecosystems (Eidenshink et al., 2007; Hall et al.,

2008; Soverel et al., 2010), precipitating extensive map-

ping efforts across the US and Canada. In the US, the

Monitoring Trends and Burn Severity (MTBS; https://

www.mtbs.gov) program has mapped satellite-inferred fire

severity from 1984 to present for fires that are at least

2.02 (eastern US) or 4.04 (western US) km2 in size

(Picotte et al., 2020). In Canada, such data have also

recently become available (Guindon et al., 2021; Whitman

et al., 2020).

To date, these remotely sensed indices have shown

mixed success in the boreal forest. Some studies found

strong correlations between satellite-inferred severity met-

rics and the field-based measure of fire severity, CBI (Allen

& Sorbel, 2008; Boucher et al., 2017; Epting et al., 2005;

Hall et al., 2008; Rogers et al., 2014). Other studies have

found weak correlations (Alonzo et al., 2017; Boby et al.,

2010; Hoy et al., 2008; Murphy et al., 2008). Some of the

challenges affecting the ability of satellite indices to accu-

rately characterize field-measured severity of boreal fires

include: intense productivity of post-fire colonizing plants,

persistent cloud cover, saturation of spectral response at

high fire severities, standing water in lowlands, downed

trees with unburned canopies, low solar zenith angle, shad-

owing related to topography, and large variability in inter-

annual vegetation phenology (Chen et al., 2020; French

et al., 2008; Hoy et al., 2008; Verbyla et al., 2008). In addi-

tion, the commonly applied field method (CBI) has its

own shortcoming for assessing fire severity in boreal for-

ests, namely a limited ability to quantify organic layer con-

sumption (Kasischke et al., 2008). Innovative approaches

to solving these challenges are needed to improve the relia-

bility and accuracy of satellite-inferred fire severity metrics

in the North American boreal region.

Until recently, fire severity maps were commonly cre-

ated by differencing individual Landsat scenes from before

and after fire. The conventional method – called an ‘ex-

tended assessment’ (Key & Benson, 2006) – compares a

Landsat scene generally taken from the growing season

1 year before fire to another scene from the growing sea-

son 1 year after fire. More recently, the cloud-computing

platform Google Earth Engine has facilitated an entirely

new range of computing possibilities for satellite imagery

applications (Gorelick et al., 2017). Earth Engine’s com-

pute power and comprehensive data catalog allows for all

images of interest within a date range to be quickly and

easily analyzed on a pixel-wise basis and obviates the need

for parsimonious data collections. As such, severity maps

are no longer limited to single-scene Landsat compar-

isons; rather all clear pixels (i.e. without clouds, smoke,

or shadows) across a date range of interest can be

stacked, and a summary statistic (e.g. mean, median, min-

imum) calculated for each pixel in a stack (Guindon

et al., 2021; Parks et al., 2018; Whitman et al., 2020). This

approach, coined ‘compositing’, is increasingly applied to

fires in the contiguous US (Parks et al., 2018, 2019; Sou-

lard et al., 2016), Canada (Kato et al., 2020; Whitman

et al., 2020), and much of the globe (Hislop et al., 2020;

Pérez-Romero et al., 2019). The compositing approach is

a faster method for assessing fire severity, as it does not

rely on time-consuming a priori scene selection (Parks

et al., 2018). It also allows for greater flexibility in

selecting appropriate date ranges for pre- and post-fire

imagery – an important feature for tailoring severity

assessments to boreal ecosystems.

Leveraging the power of Earth Engine, we developed an

alternative method for assessing fire severity in the North

American boreal forest. Our approach, which we call a

‘hybrid composite’ method, modifies the conventional

representation of the post-fire condition, that is, using

imagery from the year following fire, and instead assem-

bles all valid images between the immediate post-fire date

and the early growing season of the following year. These

images are composited to form a single image for the

post-fire period. Our intention in modifying the post-fire

time frame was to better incorporate the proximate effects

directly after fire such as scorching, charring and mortal-

ity in the post-fire image, while minimizing the potential

effects of intense plant colonization in the following year.

Our main objective in this study is to demonstrate the

hybrid composite method as an alternative remote sensing

technique for evaluating fire severity in the boreal forests

of North America. We compare the hybrid composite

method to two versions of extended assessments (i.e.

1 year before vs. 1 year after): the ‘extended composite’,

in which the pre- and post-fire images are represented by

composites of the respective growing seasons (Parks et al.,

2018; Whitman et al., 2020), and ‘paired-scene’, which

relies on a single-date Landsat scene from each time per-

iod (Eidenshink et al., 2007; Key & Benson, 2006). We

evaluate performances of each approach by modeling the

relationships between satellite-inferred severity and the

field-based measure of severity, CBI. We also provide

Earth Engine code to produce gridded fire severity data-

sets using the hybrid composite approach.
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Materials and Methods

Study Area

We focused our study on fires from forested areas of the

boreal zone across Alaska and Canada (Brandt, 2009) for

which we were able to acquire CBI data. Common tree

species in the North American boreal forest include black

spruce (Picea mariana), white spruce (Picea glauca), jack

pine (Pinus banksiana), lodgepole pine (Pinus contorta

var. latifolia), tamarack (Larix laricinia), and broadleaf

trees such as trembling aspen (Populus tremuloides),

balsam poplar (Populus balsamifera), Alaska paper

birch (Betula neoalaskana), and paper birch (Betula

papyrifera).

Processing in Google Earth Engine

We used Earth Engine’s capabilities to produce Landsat-

based fire severity metrics for each of 52 fires from the

boreal region (Fig. 1A; described further in Section 2.3).

Fire severity metrics are based on the normalized burn

ratio (NBR, Equation 1) and include: (a) delta normalized

burn ratio (dNBR, Equation 2, Key & Benson, 2006), and

(b) relativized burn ratio (RBR, Equation 3, Parks et al.,

2014), as follows:

Figure 1. Locations (A) of the 52 fires included in the validation of the delta normalized burn ratio (dNBR) and relativized burn ratio (RBR). North

American boreal zone is shown in dark gray shading. Numeric labels indicate locations of fires with at least 25 CBI plots (see Table 3) as follows:

(1) Bonanza Creek, (2) Clawanmenka Lake, (3) Old Dummy, (4) Tanana Area, (5) Herron River, (6) Currant Creek, (7) Chitsia, (8) Survey Line, (9)

Lower Mouth, (10) Winter Trail, (11) Delta Complex, (12) Beverly, (13) Andrew Creek, (14) Witch, (15) Jessica, (16) Funny River, (17) Glacier

Creek, (18) Dawson, (19) Chakina, (20) Black Hill, (21) Angus Pine 1, (22) Sandy, (23) Jordin Creek, (24) Peace Point #1, (25) Lake One, (26)

Chuckegg, (27) Southesk, (28) Dogrib, (29) Thompson Lake, (30) Burntwood, and (31) 2013080250. Example visualization of RBR for the Andrew

Creek fire using: (B) the hybrid composite, (C) extended composite, and (D) paired scene methods.
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NBR¼ NIR�SWIR

NIRþSWIR

� �
(1)

dNBR¼ NBRprefire�NBRpostfire

� ��1000 (2)

RBR¼ dNBR

NBRprefireþ1:001
(3)

where NIR and SWIR in equation 1 are the near infrared

and shortwave infrared bands respectively (White et al.,

1996). NIR usually declines after fire due to vegetation

mortality and char deposition, whereas SWIR increases

due to greater soil exposure, char and moisture loss in

the overstory and understory (Bright et al., 2019).

In Earth Engine, we implemented the compositing

approach (Parks et al., 2018; Whitman et al., 2020), where

a mean for each pixel is taken across a stack of images

that occur within a given date range. We explored other

metrics (e.g. minimum, median) for summarizing NBR

and found the best results using a ‘mean’ for the image

reduction process. We used Landsat Surface Reflectance

Tier 1 datasets, including TM, ETM+, and OLI imagery,

and selected the set of best-available data by removing

any pixels with snow, clouds, shadow, or water, based on

the quality assessment band in each image.

We tested two different scenarios for ranges of dates

used to create post-fire NBR to evaluate the potential for

improvements in fire severity metrics with compositing

methods (Table 1). For the hybrid composite approach

(Fig. 2), the post-fire NBR image included dates from

immediately after the fire was extinguished through 15

November of that year, plus dates from the following year

starting when snow cover was absent from the fire

perimeter through 1 July. Any pixels selected within this

time period that had snow (e.g. in early November) were

excluded from the imagery dataset based on the quality

assessment band. For fires occurring in years 2000

onward, we used data products from the Moderate

Resolution Imaging Spectroradiometer (MODIS) sensors

to determine the dates when each fire was extinguished

and when the spring snow-free period started (Fig. 2).

MODIS sensors provide higher temporal resolution than

Landsat (i.e. daily vs. ~16 day repeat cycle; Goward et al.,

2017) but lower spatial resolution (1-km vs. 30-m). The

daily frequency of MODIS allowed us to pinpoint appro-

priate dates for the post-fire imagery but the difference in

spatial resolution between MODIS and Landsat necessi-

tated that we determine fire termination and snow-free

dates across whole fires rather than on a per-pixel basis.

Specifically, we used MODIS Terra and Aqua Thermal

Anomalies and Fire Daily Global datasets (MOD14A1 V6

and MYD14A1 V6, respectively) to assess the date when

burned pixels no longer occurred within a fire perimeter.

In the year following fire, we used MODIS Terra and

Aqua Snow Cover Daily Global datasets (MOD10A1 V6

and MYD10A1 V6, respectively) to identify when snow

cover no longer existed within a fire perimeter. Here, we

queried the earliest day from late winter to summer (i.e.

1 February to 1 July) when snow cover was 5% or less for

each pixel, and then selected the 95th and 75th percentile

values across each fire. The snowmelt day for the fire was

assigned to the 95th percentile value if that day occurred

before 1 July, otherwise the 75th percentile was used; if

the 75th percentile value occurred after 1 July, we

assumed 30 April as the snowmelt day for the fire.

MODIS imagery became available in 2000, but the data

coverage may be constrained due to outages (e.g. 6–8
August 2000 and 16 June to 2 July 2001; Giglio et al.,

2013) or cloud cover (Ziel et al., 2020). Where MODIS

data coverage was limited, we assumed that fires were

extinguished by 15 September for the year of fire and

snowmelt completed by 30 April for the year following

fire, with the exception of the late-season Dogrib fire

which terminated on 21 October 2001 (Boychuk et al.,

2009). For the extended composite approach, post-fire

NBR imagery was created by compositing pixels from the

fire season date range (20 May–31 August, Table 1) from

1 year after fire; this time period reflects the general time-

frame in which a single scene would typically be selected

in a paired-scene assessment.

For both the hybrid and extended assessment compos-

ites, the pre-fire image date range was 20 May to 31

August (Table 1) to reflect the typical fire season (Abat-

zoglou & Kolden, 2011; Stocks et al., 2002) and vegeta-

tion conditions during the summer growing season in the

North American boreal zone. We acknowledge that the

range of dates that best represent fire severity and pheno-

logical patterns varies annually, but by computing a time-

integrated mean, we aimed to capture the dominant sig-

nal in NBR across each time period.

Table 1. Image season date ranges for composite methods to

develop and evaluate fire severity metrics.

Method

type

Pre-fire NBR Post-fire NBR

Start End Start End

Extended May 20

YBF

Aug 31

YBF

May 20 YAF Aug 31

YAF

Hybrid May 20

YBF

Aug 31

YBF

Day after fire

ends YOF

Nov 15

YOF

Day after snow

cover ends YAF

Jul 1 YAF

Start/end columns indicate the dates within which imagery was

included for calculating NBR. YBF, year before fire; YAF, year after

fire; YOF, year of fire; NBR, normalized burn ratio.
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Evaluation

We compared dNBR and RBR produced using hybrid

compositing, extended compositing and paired scenes.

For the paired-scene method, we acquired pre- and post-

fire imagery from the MTBS program (mtbs.gov) for fires

in the US. For Canada, we identified paired pre- and

post-fire Landsat scenes with minimal cloud, shadow or

snow for each fire, and produced fire severity metrics

using Earth Engine.

Our evaluations were based on the correspondence of

dNBR and RBR to the field-based, continuous measure of

severity, CBI (Key & Benson, 2006). The CBI method

visually assesses fire effects across five forest strata (i.e.

substrate; herbs, low shrubs, saplings; tall shrubs and

small trees; intermediate trees; big trees) by evaluating

factors such as surface fuel consumption, soil char, vege-

tation mortality and scorching of trees (Key & Benson,

2006). CBI values range from 0 to 3, with 0 being

unburned and 3 representing the most severe burn. At

each CBI plot location, we extracted satellite-derived

dNBR and RBR values using bilinear interpolation. A

number of fires lacked CBI plots representing unburned

or very low severity, which are important in building bal-

anced regression models (Parks et al., 2019). Similar to

Parks et al. (2019), we supplemented our plot dataset,

where needed, such that each fire had at least 10% of its

plots represented by CBI ≤0.25. These additional

‘pseudo-plots’ were created for 15 fires by randomly

selecting unburned pixels at a distance of 200 m outside

fire perimeters in areas that were not composed of rock

or water; these plots were assigned a CBI value of 0. In

total, we gathered CBI data for 52 fires, 24 in Alaska and

28 in Canada. The initial number of CBI plots varied for

each method because the availability of cloud-, shadow-,

and snow-free pixels varied. We selected plots with valid

imagery (i.e. clear) and common to the hybrid and

extended composite and paired-scene approaches to

ensure a common dataset (1788 plots in total) was avail-

able to consistently compare results across methods.

We evaluated each satellite-inferred severity metric

using non-linear least-squares (NLS) regression models

with CBI as the dependent variable using plot data from

all 52 fires combined. We used a fivefold cross-validation;

for each of the fivefolds, we used 80% of the data to train

the model and the remaining 20% for testing (i.e. we

used the model to predict CBI). The non-linear regression

equation was, as follows:

CBI¼ a� 1� exp b� yð Þð Þ (4)

where y was the satellite-derived metric being evaluated

and starting values for a and b in the algorithm were 3.2

Figure 2. Flowchart describing the process to create Landsat-derived fire severity metrics in Google Earth Engine using the hybrid composite

approach. Parallelograms represent data types, and rectangles indicate processing selections or steps.
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and 0.002 respectively. Least-square regression modeling

was performed using R software and implementing the

NLS function (R Development Core Team, 2021). We

built three models for each approach and fire severity

metric, one with Alaskan and Canadian fires combined

and individual models for Alaska and Canada. Following

Whitman et al. (2020), predictions outside the range of

field measurements (0–3) were curtailed to the field-

observed range. We tested model skill by comparing

observed and predicted CBI using linear regression for

each severity metric, reporting the coefficient of determi-

nation (i.e. R2 of linear regression), root-mean-square

error (RMSE) as a measure of model spread, and mean

absolute error (MAE) as a measure of bias. Availability of

Landsat imagery began consistently increasing in boreal

regions in 2001 with both Landsat 5 and 7 satellites oper-

ational (note, Landsat 7 was launched in 1999 nearly dou-

bling image availability but Landsat 5 TM acquisition

declined markedly for 1 year in 2000 in boreal regions, cf.

Sulla-Menashe et al., 2016); correspondingly, satellite

measures of burn severity improved with the greater

image availability (Chen et al., 2021). Therefore, we also

included analyses restricted to fires from the 2002–2019
time period, such that all pre- and post-fire imagery were

acquired from 2001 onward. That is, we constrained vali-

dation statistics into two time periods, fires that occurred

during 1999–2019 and 2002–2019, for each of the three

sets of models.

Using the NLS model that included both Alaska and

Canada (years 1999–2019) with predictions based on a

fivefold cross validation, we also produced validation

statistics on a per-fire basis to examine whether fire sever-

ity methods performed better for certain fires or fire

years. For these per-fire comparisons, we only selected

fires with at least 25 CBI plots (not including pseudo-

plots previously described) to ensure model validations

were adequately robust. There were 31 fires meeting our

criteria (12 in Canada, 19 in Alaska; Fig. 1A).

Thresholds were also developed to categorize satellite-

inferred severity data into low-, moderate-, and high-

severity classes. We identified these thresholds using the

NLS regression models described above, except that we

applied models across the entire CBI dataset (1788 plots)

rather than with a cross-validated approach. Accordingly,

we used the models to, first, predict CBI across a range of

values representing satellite-inferred severity (0–1000). We

then identified the satellite-derived severity values that

correspond to predicted CBI, at values which are well-

recognized as representing breaks for classifying field-

derived severity, as follows: 0–1.24 for low severity, 1.25–
2.25 for moderate severity, and 2.26–3.0 for high severity

(Miller & Thode, 2007). These thresholds were developed

for both dNBR and RBR for each composite method and

the paired-scene method for fires across all years, in

Alaska and Canada combined and separately.

Lastly, we counted the number of scenes contributing

to each pre- and post-fire image, calculated statistical

summaries for each composite method, and evaluated

relationships between the number of scenes in post-fire

images and R2 between CBI predicted versus observed

(i.e. performance) on a per-fire basis.

Results

The hybrid composite approach generally outperformed

(higher R2, lower RMSE error, and lower MAE bias)

other approaches in measuring fire severity (Table 2). The

Table 2. Model fit (R2), root-mean-square error (RMSE) and mean

absolute error (MAE) for non-linear least-squares regression models

predicting Composite Burn Index (CBI) from burn severity metrics of

the differenced normalized burn ratio (dNBR) and relativized burn

ratio (RBR) produced from the hybrid and extended composite meth-

ods, and paired-scene method.

Severity metric &

method

1999–2019 2002–2019

R2 RMSE MAE R2 RMSE MAE

Alaska & Canada

dNBR: hybrid

composite

0.70 0.40 0.32 0.72 0.39 0.31

dNBR: extended

composite

0.66 0.47 0.37 0.68 0.45 0.35

dNBR: paired-scene 0.64 0.51 0.40 0.66 0.48 0.38

RBR: hybrid composite 0.71 0.40 0.32 0.73 0.39 0.31

RBR: extended

composite

0.66 0.49 0.38 0.68 0.47 0.37

RBR: paired-scene 0.63 0.52 0.41 0.65 0.50 0.40

Alaska

dNBR: hybrid

composite

0.65 0.41 0.33 0.72 0.38 0.30

dNBR: extended

composite

0.61 0.51 0.39 0.66 0.47 0.36

dNBR: paired-scene 0.60 0.50 0.39 0.66 0.43 0.34

RBR: hybrid composite 0.67 0.41 0.32 0.73 0.38 0.30

RBR: extended

composite

0.61 0.52 0.40 0.66 0.48 0.37

RBR: paired-scene 0.60 0.51 0.41 0.65 0.45 0.36

Canada

dNBR: hybrid

composite

0.74 0.39 0.31 0.73 0.39 0.31

dNBR: extended

composite

0.72 0.43 0.34 0.71 0.44 0.35

dNBR: paired-scene 0.69 0.50 0.40 0.68 0.51 0.41

RBR: hybrid composite 0.75 0.39 0.31 0.74 0.40 0.31

RBR: extended

composite

0.71 0.45 0.36 0.69 0.46 0.36

RBR: paired-scene 0.69 0.50 0.40 0.68 0.51 0.41

Results from each metric and method are presented for Alaska and

Canada combined and separately across all available fire years (1999–
2019) and for the subset of 2002–2019.
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elevated performance was evident across nearly all areas,

time periods, and severity metrics. In Alaska, the R2 of

predicted versus observed CBI for the hybrid approach

was consistently higher than the next-best method across

all metrics, methods, and time periods (Table 2; Fig. S1).

In Canada, the hybrid composite also performed better

across metrics, methods, and time periods, particularly

with the RBR metric (Table 2; Fig. S2). Considering both

countries combined, the hybrid composite method again

outperformed other methods across metrics, methods,

and time periods (Table 2; Fig. 3).

All three methods generally performed better, on a per-

fire basis, from 2002 onward compared to previous years,

with the hybrid composite method demonstrating the

most consistently high model fits. On average, R2 values

from modeling fires using the hybrid composite method

were >0.70 across Alaska and Canada, with a handful of

exceptions in 2004, 2014, and 2019 (Table 3). Two fires

(Clawanmenka Lake 2004 in Alaska and Chuckegg 2019

fire in Canada) showed relatively lower R2 values (0.45–
0.66) across all severity metrics and methods. The 2014

Funny River fire (Alaska) also performed relatively poorly

across all metrics and methods (R2 values of 0.39–0.66),

except for the paired-scene method (R2 values of 0.91–
0.92), which in this case, the MTBS program used a post-

fire scene from the year of fire rather than the conven-

tional timing of the year following fire. In addition, the

correspondence between CBI and each of the severity

metrics of dNBR and RBR was very comparable across all

time periods and areas. Lastly, for demonstration pur-

poses, we present example maps of dNBR produced using

each of the three methods for one fire – 2018 Andrew

Creek in Alaska (Fig. 1B-D).

Thresholds for classifying satellite-inferred severity data

into low-, moderate-, and high-severity classes are shown

in Table 4. These thresholds may be applied to severity

products created for fires in this study, or practitioners

can implement the compositing or paired-scene methods

to other fires and classify the resulting datasets with these

threshold values.

For the composite methods, the number of scenes con-

tributing to pre-fire imagery averaged 7.9 (�4.4 SD) across

all boreal fires, whereas post-fire imagery averaged 9.9

(�4.1 SD) and 11.9 (�5.9 SD) for extended and hybrid

assessments respectively (Table S1). We found positive

relationships between the number of scenes (contributing

Figure 3. Non-linear least-squares regression models of the field-based Composite Burn Index as a function of dNBR and RBR severity metrics for

the hybrid and extended composite methods, and the paired-scene method for fires from 2002 to 2019 in the boreal region of Alaska and

Canada. Red lines are the modeled fit of regressions, and the resulting R2 is shown in blue.
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to post-fire imagery) and the performance of fires (i.e. R2

from CBI predicted vs. observed) across metrics for the

hybrid composite method (r = 0.4 for dNBR, r = 0.37 for

RBR; P < 0.05 for both metrics), while the extended

composite method showed weak relationships (r = −0.01
and P = 0.97 for dNBR, r = −0.1 and P = −0.59 for

RBR).

Discussion

The hybrid composite approach, which composites ima-

gery from immediately after a fire and from the following

spring and early summer, demonstrates the most promise

for improving satellite-derived fire severity estimates in

North American boreal forests. This approach uses a

relatively novel process of querying MODIS data to

inform dates of appropriate Landsat image selection (cf.

Hislop et al., 2020); that is, MODIS queries inform the

date a fire was extinguished and date of snowmelt the fol-

lowing spring which in turn determines Landsat imagery

selection. The proposed hybrid composite method

improves the relationship between satellite-derived and

on-the-ground metrics of severity by circumventing some

of the challenges associated with fire severity mapping of

high-latitude forests. The hybrid composite method takes

advantage of new remote sensing technology, a large col-

lection of CBI plots, and a growing understanding of fire

severity in the boreal forest of North America. As such, it

represents the next step in the evolution of fire-severity

mapping for this ecosystem.

Table 3. R2 from model fits relating CBI to severity metrics on a per-fire basis for the hybrid and extended composite methods and the paired-

scene method, where the first value under each method is R2 for dNBR and the second value is R2 for RBR.

Fire name Fire year Region

Hybrid

composite

Extended

composite Paired-scene

Number of plotsdNBR RBR dNBR RBR dNBR RBR

Beverly 1999 AK 0.64 0.68 0.63 0.65 0.56 0.57 40

Jessica 1999 AK 0.68 0.66 0.70 0.69 0.61 0.60 47

Witch 1999 AK 0.71 0.76 0.63 0.69 0.86 0.84 32

Chitsia 2000 AK 0.81 0.82 0.82 0.84 0.87 0.86 25

Dogrib 2001 CAN 0.79 0.83 0.74 0.78 0.71 0.76 50

Herron River 2001 AK 0.86 0.87 0.86 0.86 0.82 0.81 25

Survey Line 2001 AK 0.57 0.60 0.48 0.49 0.48 0.50 87

Burntwood 2003 CAN 0.92 0.91 0.91 0.91 0.93 0.93 26

Thompson Lake 2003 CAN 0.77 0.78 0.83 0.84 0.77 0.78 56

Black Hill 2003 AK 0.85 0.84 0.82 0.80 0.87 0.85 65

Angus Pine 1 2004 CAN 0.84 0.84 0.89 0.89 0.90 0.89 70

Dawson 2004 CAN 0.90 0.90 0.86 0.86 0.80 0.80 37

Glacier Creek 2004 AK 0.89 0.91 0.85 0.85 0.85 0.87 39

Bonanza Creek 2004 AK 0.81 0.82 0.82 0.82 0.76 0.75 64

Lower Mouth 2004 AK 0.74 0.75 0.65 0.65 0.74 0.74 53

Clawanmenka Lake 2004 AK 0.66 0.63 0.56 0.52 0.52 0.47 70

Winter Trail 2004 AK 0.91 0.90 0.92 0.91 0.93 0.91 50

Old Dummy 2005 AK 0.73 0.72 0.70 0.69 0.54 0.53 63

Peace Point #1 2005 CAN 0.85 0.85 0.91 0.92 0.92 0.92 47

Southesk 2006 CAN 0.77 0.76 0.81 0.82 0.78 0.79 44

Lake One 2007 CAN 0.77 0.78 0.74 0.74 0.63 0.63 59

Jordin Creek 2007 CAN 0.79 0.79 0.71 0.71 0.68 0.70 43

Sandy 2008 CAN 0.86 0.87 0.80 0.81 0.80 0.82 100

Chakina 2009 AK 0.81 0.82 0.84 0.85 0.35 0.37 66

Delta Complex 2010 AK 0.94 0.95 0.88 0.90 0.87 0.88 30

20131080250 2013 CAN 0.82 0.84 0.85 0.87 0.84 0.85 44

Currant Creek 2013 AK 0.80 0.80 0.84 0.85 0.86 0.87 43

Funny River 2014 AK 0.66 0.66 0.40 0.39 0.92 0.91 49

Tanana Area 2015 AK 0.82 0.83 0.81 0.82 0.88 0.88 38

Andrew Creek 2018 AK 0.90 0.87 0.87 0.85 0.80 0.79 28

Chuckegg 2019 CAN 0.56 0.57 0.65 0.62 0.45 0.48 46

Only fires with at least 25 CBI plots were selected to ensure robust model validation. CBI, Composite Burn Index; dNBR, differenced normalized

burn ratio; RBR, relativized burn ratio; AK, Alaska; CAN, Canada.
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The higher performance of the hybrid composite

method is likely related to its ability to capture the initial

and longer term effects of fire, while moderating seasonal

factors that obscure spectral response measures related to

fire effects. Fires in the North American boreal forest

often burn as high-intensity, crown fires that kill most of

the overstory and understory vegetation (Kasischke et al.,

2008; Viereck, 1983). In the year following fire, under-

story species rapidly regenerate (Hart & Chen, 2006) with

communities dominated by fast-growing vascular plants

(Greene et al., 1999), although non-vascular species may

represent a significant component of the recolonization as

well (Pinno & Errington, 2016; Spellman et al., 2014).

Revegetation can be rapid from rhizomatous re-sprouters

in moderate and low-severity fires, whereas annual forbs

and graminoid species can quickly colonize bare soil after

high-severity burns (Hollingsworth et al., 2013; Pinno &

Errington, 2016; Wang & Kemball, 2005). The hybrid

composite method acquires and averages reflectance ima-

gery starting from immediately after fire, and thus incor-

porates the immediate effects of fire, such as charring,

scorching, and under- and overstory mortality (Hudak

et al., 2007), before vegetation recovery begins. In the year

following fire, the hybrid composite method includes

imagery from directly after snowmelt to early summer (1

July), and reduces the signal from the most intense peak

of post-fire establishment of vegetation, which may affect

severity–CBI relationships (Murphy et al., 2008). The

extended method, in contrast, incorporates post-fire ima-

gery through late summer, and more fully incorporates

the prolific productivity from recolonization in the grow-

ing season after fire, which may more strongly disguise

remote sensing measures of fire severity. The factors

influencing spectral response measures of fire severity are

complex (Murphy et al., 2008) and highly variable among

ecosystems (French et al., 2008; Lentile et al., 2006), and

it is thus challenging to disentangle their relative influ-

ences. However, the success demonstrated here indicates

the potential for continued improvements by taking

advantage of the image repository and cloud-computing

environment provided by Earth Engine.

More generally, the hybrid composite method used

here demonstrates that rapidly evolving technologies may

help overcome certain challenges for using remote sensing

to assess fire severity in northern latitudes. One challenge

of the paired-scene approach is obtaining high-quality

Landsat scenes with similar phenological timing (Chen

et al., 2021). Cloud cover and smoke is a common issue

for acquiring imagery in boreal regions, and cloud shad-

ows can have greater effects due to low solar angle at high

latitudes (Verbyla et al., 2008). Verbyla et al. (2008)

reported variation in dNBR values attributable, in part, to

varying seasonal timing of pre-fire scene acquisitions,

which is often necessary due to limited availability of

cloud-free scenes. In our study, one might have expected

the paired-scene approach to outperform the extended

composite approach because of greater precision by ana-

lysts in selecting pre- and post-fire scenes with similar

timing (Whitman et al., 2020). However, in Alaska, these

two methods had virtually identical performance, whereas

in Canada, the extended composite approach performed

slightly better than the paired-scene approach. We sur-

mise that the ability to acquire cloud-free pixels more

readily through image compositing can have equal if not

more benefit to the challenges of analysts’ selection of

paired, cloud-free scenes. Not only is data quality on par

with the paired-scene approach, but compositing methods

provide an overall gain in the number of mapped pixels

within burns due to the greater availability of pixels free

of clouds and smoke (Whitman et al., 2020). Lastly, mean

compositing approaches allow severity data to be, consis-

tently, systematically, and easily produced, such that

trends over time can be more reliably evaluated (Hislop

et al., 2020).

Table 4. Threshold values for each fire severity metric corresponding

to low (CBI = 0–1.24), moderate (CBI = 1.25–2.25), and high severity

(CBI = 2.26–3) produced from hybrid and extended composite meth-

ods, and paired-scene method.

dNBR RBR

Low Moderate High Low Moderate High

Alaska & Canada

Hybrid

composite

≤289 290–690 ≥691 ≤201 202–461 ≥462

Extended

composite

≤223 224–583 ≥584 ≤164 165–394 ≥395

Paired-

scene

≤286 287–667 ≥668 ≤207 208–450 ≥451

Alaska

Hybrid

composite

≤285 286–697 ≥698 ≤200 201–466 ≥467

Extended

composite

≤223 224–591 ≥592 ≤165 166–398 ≥399

Paired-

scene

≤247 248–645 ≥646 ≤176 177–422 ≥423

Canada

Hybrid

composite

≤292 293–683 ≥684 ≤202 203–456 ≥457

Extended

composite

≤223 224–573 ≥574 ≤162 163–389 ≥390

Paired-

scene

≤328 329–685 ≥686 ≤245 246–476 ≥477

Results from each metric and method are presented for Alaska and

Canada combined and separately across all fire years (1999–2019).
CBI, Composite Burn Index; dNBR, differenced normalized burn ratio;

RBR, relativized burn ratio.
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On a fire-by-fire basis, the notable variation in valida-

tion statistics reflects the strengths and weaknesses of each

approach. For fires burning early in the summer, such as

the 2010 Delta Complex (Alaska) fire in the interior bor-

eal zone, fire effects may be severe but some vegetation

(such as forbs and grasses) can vigorously recover that

summer. In these cases, the hybrid composite method

better incorporates the severe fire effects that are evident

immediately after fire. For fires where understory

regrowth is relatively slow, such as the 2013 Currant

Creek fire (Alaska; Barnes & Northway, 2015), the

extended composite or paired-scene approaches may be

more suitable, as they minimize variation from phenology

and moisture content. Under the best of circumstances,

when pre- and post-fire cloud-free scenes are available at

narrowly similar times, the paired-scene approach may

offer the best option as evidenced by the 2015 Tanana

River fire (Alaska), where scene acquisition was exactly

1 year and 1 day apart and closely aligned to the fire

anniversary date. Such variation highlights that the best

approach for measuring fire severity may depend on the

context and conditions of each fire, as well as the mea-

surement objectives. If the goal is to monitor fire-induced

ecological change and trends in a systematic way across

fires, the hybrid composite method offers an improved

and automated alternative for North American boreal

forests.

A few fires demonstrated either varied or lower perfor-

mances across methods, indicating the need for further

improvements to remotely sensed measurements of fire

severity in northern latitudes. One example is the 2014

Funny River fire on the Kenai Peninsula, Alaska, which

ignited in May over frozen ground, prior to green-up, in

a spruce-dominated-forest, where grass (mainly Calama-

grostis canadensis) rapidly regenerated by mid-June of the

following year (L. Saperstein, pers. comm.). The paired-

scene approach ostensibly performed well compared to

the compositing methods, but unlike all other paired-

scene imagery obtained from MTBS, the post-fire Landsat

scene for this fire was taken from immediately post-fire

and thus, did not match the standard methodology used

by MTBS in Alaska of extended assessments for paired-

scene imagery (Picotte et al., 2020). A second example is

the 2019 Chuckegg fire in the Canadian boreal plains in

Alberta. This fire was dominated by deciduous (mainly

trembling aspen) forest prior to burning and burned over

several months. There was intense resprouting of aspen

that same summer, while some parts of the fire were still

burning. All CBI plots from the Chuckegg fire were in

aspen-dominated stands. Corresponding model fits using

the hybrid composite were better than expected (0.56–
0.57), but still not on par with other fires from recent

years; the extended composite and paired-scene methods

also showed weaker relationships (0.45–0.65; Table 2).

Such incongruity in model fits across both spruce and

deciduous forests demonstrates the need to incorporate

tree-species dominance and site condition in remote sens-

ing measures of fire severity.

Moving forward, the need for more refined remote

sensing methods will only increase as climate change and

fire catalyze forest conversion to different vegetation types

(Coop et al., 2020; Stralberg et al., 2018). The boreal

region of North America is warming twice as fast as the

global average (Serreze & Barry, 2011). Rising tempera-

tures have been associated with intensified fire weather,

increased wildfire area burned, shorter fire intervals, and

more severe fires (Veraverbeke et al., 2017; Whitman,

Parisien, et al., 2019; Xiao & Zhuang, 2007). Interactions

between climate change and fire are expected, for

instance, to convert some black spruce forest to decidu-

ous forest (Johnstone et al., 2010; Mekonnen et al., 2019;

Searle & Chen, 2017), and indeed such transitions are

already underway at regional scales in interior Alaska, and

throughout the North American boreal biome (Hansen

et al., 2020). Deciduous forests (e.g. aspen and birch)

resprout prolifically after burning (de Groot & Wein,

1999; Johnstone, 2005), perhaps to an extent that strongly

impacts surface reflectance and obscures remote sensing

measures of fire severity. Our methods could be advanced

by more precisely detecting the period of intense revege-

tation using other spectral measures highly sensitive to

plant productivity, such as the Normalized Difference

Vegetation Index (Nemani & Running, 1997), and thereby

better identify imagery acquisition dates that precede

regrowth in deciduous forests. Future research could also

explore methods that downscale Landsat-derived NBR

based on MODIS data to produce high temporal fre-

quency and high spatial resolution severity measures

(sensu Filgueiras et al., 2020).

Conclusions

We present an alternative methodology, the ‘hybrid com-

posite’, for producing fire severity metrics for the North

American boreal region using freely available satellite data

in the Earth Engine cloud-computing environment. This

method offers an improvement over existing ones by

more completely incorporating the range and variability

of fire effects unique to the North American boreal zone.

This approach can complement existing fire databases,

and thereby broaden our understanding and monitoring

of fire-induced change in boreal ecosystems. For instance,

maps based on this method could help track potential

effects on wildlife distribution from expected fire-related

changes in plant communities, such as conversion from

coniferous to deciduous forest following high-severity
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fires (Russell & Johnson, 2019). Other ecosystems with

rapid regrowth of burned vegetation, not only in boreal

zones but the southeastern and southwestern United

States (Picotte et al., 2020), may also benefit by applying

similar methods that target the timing of Landsat sam-

pling based on high temporal frequency MODIS data;

however, plot data should be tested to evaluate the effi-

cacy of the hybrid method to such ecosystems. Innovation

in fire monitoring techniques is becoming increasingly

important as area burned continues to increase with cli-

mate warming, and techniques such as the hybrid com-

positing method offer improve assessments of consequent

fire effects in high-latitude ecosystems particularly sensi-

tive to climate change.
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Figure S1. Non-linear least-squares regression models of

the field-based Composite Burn Index as a function of

dNBR and RBR severity metrics for the hybrid and

extended composite methods, and the paired-scene
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the field-based Composite Burn Index as a function of

dNBR and RBR severity metrics for the hybrid and
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method for fires from 2002 to 2019 in the boreal region

of Canada.
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