Post-fire carbon dynamics in subalpine forests of the Rocky Mountains
www.nrfirescience.org/resource/20552
Forests store a large amount of terrestrial carbon, but this storage capacity is vulnerable to wildfire. Combustion, and subsequent tree mortality and soil erosion, can lead to increased carbon release and decreased carbon uptake. Previous work has shown that non-constant fire return intervals over the past 4000 years strongly...
Author(s): Kristina J. Bartowitz, Philip E. Higuera, Bryan N. Shuman, Kendra K. McLauchlan, Tara W. Hudiburg
Year Published: 2019
Type: Document
Book or Chapter or Journal Article

Long-term evidence for fire as an ecohydrologic threshold-reversal mechanism on woodland?encroached sagebrush shrublands
www.nrfirescience.org/resource/19828
Encroachment of sagebrush (Artemisia spp.) shrublands by pinyon (Pinus spp.) and juniper (Juniperus spp.) conifers (woodland encroachment) induces a shift from biotic?controlled resource retention to abiotic?driven loss of soil resources. This shift is driven by a coarsening of the vegetation structure with increasing dominance...
Author(s): C. Jason Williams, Frederick B. Pierson, Sayjro K. Nouwakpo, Patrick R. Kormos, Osama Z. Al-Hamdan, Mark A. Weltz
Year Published: 2019
Type: Document
Book or Chapter or Journal Article

Distinguishing disturbance from perturbations in fire-prone ecosystems
www.nrfirescience.org/resource/19441
Fire is a necessary ecosystem process in many biomes and is best viewed as a natural disturbance that is beneficial to ecosystem functioning. However, increasingly, we are seeing human interference in fire regimes that alters the historical range of variability for most fire parameters and results in vegetation shifts. Such...
Author(s): Jon E. Keeley, Juli G. Pausas
Year Published: 2019
Type: Document
Book or Chapter or Journal Article

Vegetation succession in an old-growth ponderosa pine forest following structural restoration with fire: implications for retreatment and maintenance - JFSP Final Report
www.nrfirescience.org/resource/19272
Stand changes brought on by fire exclusion have contributed to reduced resilience to wildfire in ponderosa pine forests throughout the western US. Growing recognition of how structural attributes influence resilience has led to interest in restoring more heterogeneous conditions once common in these forests, but key information...
Author(s): Eric E. Knapp, Alan H. Taylor, Michelle Coppoletta, Natalie Pawlikowski
Year Published: 2019
Type: Document
Technical Report or White Paper

Post?fire forest regeneration shows limited climate tracking and potential for drought?induced type conversion
www.nrfirescience.org/resource/19037
Disturbance such as wildfire may create opportunities for plant communities to reorganize in response to climate change. The interaction between climate change and disturbance may be particularly important in forests, where many of the foundational plant species (trees) are long-lived and where poor initial tree establishment can...

Author(s): Derek J. N. Young, Chhaya M. Werner, Kevin R. Welch, Truman P. Young, Hugh Safford, Andrew Latimer
Year Published: 2019
Type: Document
Book or Chapter or Journal Article

Does burn severity affect plant community diversity and composition in mixed conifer forests of the United States Intermountain West one decade post fire?

www.nrfirescience.org/resource/19868

Background: Wildfire is an important ecological process in mixed conifer forests of the Intermountain West region of the USA. However, researchers and managers are concerned because climate warming has led to increased fire activity in recent decades. More area burned will result in larger land areas in early successional stages and...

Author(s): Eva K. Strand, K.L. Satterberg, Andrew T. Hudak, John C. Byrne, Azad Henareh Khalyani, Alistair M. S. Smith
Year Published: 2019
Type: Document
Book or Chapter or Journal Article

Frequent and intense fires in the final coals of the Paleozoic indicate elevated atmospheric oxygen levels at the onset of the End-Permian Mass Extinction Event

www.nrfirescience.org/resource/19515

During the End-Permian mass extinction event (EPME) there is extensive evidence for depletion of oxygen in the marine realm. Atmospheric models based upon biogeochemical cycling predict a comparable decline leading up to this event and have been postulated as a possible driver for marine depletion. However, these models contrast...

Author(s): Zhiming Yan, Longyi Shao, I. J. Glasspool, Xuetian Wang, Juan Wang, Hao Wang
Year Published: 2019
Type: Document
Book or Chapter or Journal Article

Feast not famine: Nitrogen pools recover rapidly in 25?yr?old postfire lodgepole pine

www.nrfirescience.org/resource/19281

The extent of young postfire conifer forests is growing throughout western North America as the frequency and size of high-severity fires increase, making it important to understand ecosystem structure and function in early seral forests. Understanding nitrogen (N) dynamics during postfire stand development is especially important...

Author(s): Monica G. Turner, Timothy G. Whitby, William H. Romme
Year Published: 2019
Type: Document
Book or Chapter or Journal Article

Wildfire activity and land use drove 20th?century changes in forest cover in the Colorado front range

www.nrfirescience.org/resource/19049

Recent shifts in global forest area highlight the importance of understanding the causes and consequences of forest change. To examine the influence of several potential drivers of forest cover...
change, we used supervised classifications of historical (1938-1940) and contemporary (2015) aerial imagery covering a 2932?km² study area...

Author(s): Kyle Rodman, Thomas T. Veblen, Sara Saraceni, Teresa B. Chapman
Year Published: 2019
Type: Document
Book or Chapter or Journal Article

Whitebark and Foxtail Pine in Yosemite, Sequoia, and Kings Canyon National Parks: Initial Assessment of Stand Structure and Condition
www.nrfirescience.org/resource/18866
The Inventory & Monitoring Division of the U.S. National Park Service conducts long-term monitoring to provide park managers information on the status and trends in biological and environmental attributes including white pines. White pines are foundational species in many subalpine ecosystems and are currently experiencing...
Author(s): Jonathan C. B. Nesmith, Micah Wright, Erik S. Jules, Shawn T. McKinney
Year Published: 2019
Type: Document
Book or Chapter or Journal Article

Land surveys show regional variability of historical fire regimes and structure of dry forests of the western USA
www.nrfirescience.org/resource/16421
An understanding of how historical fire and structure in dry forests (ponderosa pine, dry mixed conifer) varied across the western USA remains incomplete. Yet, fire strongly affects ecosystem services, and forest restoration programs are underway. We used General Land Office survey reconstructions from the late-1800s across 11...
Author(s): William L. Baker, Mark A. Williams
Year Published: 2018
Type: Document
Book or Chapter or Journal Article

Annual climate impacts on tree growth and post-fire regeneration in ponderosa pine and Douglas-fir in the northern Rocky Mountains
www.nrfirescience.org/resource/18153
This thesis includes two studies focused on quantifying the impacts of climate change, climate variability, and wildfires on forest dynamics. In Chapter 1, I compared the accuracy of field-based methods to precise dendrochronological techniques to age ponderosa pine and Douglas-fir seedlings sampled from three study regions across...
Author(s): Lacey Hankin
Year Published: 2018
Type: Document
Dissertation or Thesis

Anticipating fire-mediated impacts of climate change using a demographic framework
www.nrfirescience.org/resource/17910
Climate change indirectly affects forest ecosystems through changes in the frequency, size, and/or severity of wildfires. In addition to its direct effects prior to fire, climate also influences immediate postfire recruitment, with consequences for future vegetation structure and fire activity. A major uncertainty, therefore, is if...
Author(s): Kimberley T. Davis, Philip E. Higuera, Anna Sala
Year Published: 2018
Fire-induced deforestation in drought-prone Mediterranean forests: drivers and unknowns from leaves to communities
www.nrfirescience.org/resource/17750
Over the past 15 years, 3 million hectares of forests have been converted into shrublands or grasslands in the Mediterranean countries of the European Union. Fire and drought are the main drivers underlying this deforestation. Here we present a conceptual framework for the process of fire-induced deforestation based on the...
Author(s): Asaf Karavani, Matthias M. Boer, Mara Baudena, Carlos Colinas, Rubén Díaz-Sierra, Jesús Pemán, Martín de Luis, Álvaro Enríquez-de-Salamanca, Víctor Resco de Dios
Year Published: 2018
Type: Document
Book or Chapter or Journal Article

www.nrfirescience.org/resource/17720
Globally, wildfire size and frequency has increased in the last thirty years across numerous ecosystems. Models predict that trend to continue with increases in temperature and shifts in seasonal precipitation caused by climate change. In the western United States, these trends are exacerbated by invasive annual grasses that create...
Author(s): Eva K. Strand, Beth A. Newingham, Chris Bowman-Prideaux
Year Published: 2018
Type: Document
Technical Report or White Paper

Biological and geophysical feedbacks with fire in the Earth system
www.nrfirescience.org/resource/17407
Roughly 3% of the Earth's land surface burns annually, representing a critical exchange of energy and matter between the land and atmosphere via combustion. Fires range from slow smouldering peat fires, to low-intensity surface fires, to intense crown fires, depending on vegetation structure, fuel moisture, prevailing climate, and...
Year Published: 2018
Type: Document
Book or Chapter or Journal Article

Fine-scale spatial climate variation and drought mediate the likelihood of reburning
www.nrfirescience.org/resource/16808
In many forested ecosystems, it is increasingly recognized that the probability of burning is substantially reduced within the footprint of previously burned areas. This self-limiting effect of wildland fire is considered a fundamental emergent property of ecosystems and is partly responsible for structuring landscape heterogeneity...
Author(s): Sean A. Parks, Marc-Andre Parisien, Carol Miller, Lisa M. Holsinger, Scott L. Baggett
Year Published: 2018
Prescribed fire regimes subtly alter ponderosa pine forest plant community structure
www.nrfirescience.org/resource/18802
Prescribed fire is an active management tool used to address wildfire hazard and ecological concerns associated with fire exclusion and suppression over the past century. Despite widespread application in the United States, there is considerable inconsistency and lack of information regarding the extent to which specific outcomes...
Author(s): Becky K. Kerns, Michelle A. Day
Year Published: 2018
Type: Document
Book or Chapter or Journal Article

Assessing High-Cost Wildfires in Relation to the Natural Distribution of Ponderosa Pine in the 11 Western States (2000-2017)
www.nrfirescience.org/resource/18147
This coarse-resolution assessment suggests that much of the West’s wildfire problem traces to the deteriorated condition of its dry ponderosa pine sites.
Author(s): Jerry T. Williams, Matthew Panunto
Year Published: 2018
Type: Document
Book or Chapter or Journal Article

Modelling the management of forest ecosystems: Importance of wood decomposition
www.nrfirescience.org/resource/17790
Scarce and uncertain data on woody debris decomposition rates are available for calibrating forest ecosystem models, owing to the difficulty of their empirical estimations. Using field data from three experimental sites which are part of the North American Long-Term Soil Productivity (LTSP) Study in south-eastern British Columbia (... Author(s): Juan A. Blanco, Deborah S. Page-Dumroese, Martin F. Jurgensen, Michael P. Curran, Joanne M. Tirocke, Joanna Walitalo
Year Published: 2018
Type: Document
Book or Chapter or Journal Article

From the stand?scale to the landscape?scale: predicting the spatial patterns of forest regeneration after disturbance
www.nrfirescience.org/resource/17733
Shifting disturbance regimes can have cascading effects on many ecosystems processes. This is particularly true when the scale of the disturbance no longer matches the regeneration strategy of the dominant vegetation. In the yellow pine and mixed conifer forests of California, over a century of fire exclusion and the warming climate...
Author(s): Kristen L. Shive, Haiganoush K. Preisler, Kevin R. Welch, Hugh Safford, Ramona J. Butz, Kevin L. O'Hara, Scott L. Stephens
Year Published: 2018
Type: Document
Book or Chapter or Journal Article

Dormant-Season Fire Inhibits Sixweeks Fescue and Enhances Forage Production in Shortgrass
Semiarid rangelands experience substantial interannual variability in precipitation, which can determine the relative abundance of species in any given year and influence the way that fire affects plant community composition and productivity. Long-term studies are needed to examine potential interactions between fluctuating...

Author(s): N. A. Dufek, David J. Augustine, Dana M. Blumenthal, Julie A. Kray, Justin D. Derner
Year Published: 2018
Type: Document
Book or Chapter or Journal Article

Climate adaption and post-fire restoration of a foundational perennial in cold desert: Insights from intraspecific variation in response to weather

1) The loss of foundational but fire-intolerant perennials such as sagebrush due to increases in fire size and frequency in semi-arid regions has motivated efforts to restore them, often with mixed or even no success. Seeds of sagebrush Artemisia tridentata and related species must be moved considerable distances from seed source to...

Author(s): Martha M. Brabec, Matthew J. Germino, Bryce A. Richardson
Year Published: 2017
Type: Document
Book or Chapter or Journal Article

Indicators of burn severity at extended temporal scales: A decade of ecosystem response in mixed conifer forests of western Montana

We collected field and remotely sensed data spanning 10 years after three 2003 Montana wildfires to monitor ecological change across multiple temporal and spatial scales. Multiple endmember spectral mixture analysis was used to create post-fire maps of: char, soil, green (GV) and non-photosynthetic (NPV) vegetation from high-...

Author(s): Sarah A. Lewis, Andrew T. Hudak, Peter R. Robichaud, Penelope Morgan, K.L. Satterberg, Eva K. Strand, Alistair M. S. Smith, J Zamudio, Leigh B. Lentile
Year Published: 2017
Type: Document
Book or Chapter or Journal Article

Fire Severity and Regeneration Strategy Influence Shrub Patch Size and Structure Following Disturbance

Climate change is increasing the frequency and extent of high-severity disturbance, with potential to alter vegetation community composition and structure in environments sensitive to tipping points between alternative states. Shrub species display a range of characteristics that promote resistance and resilience to disturbance, and...

Author(s): Jesse Minor, Donald A. Falk, Greg A. Barron-Gafford
Year Published: 2017
Type: Document
Book or Chapter or Journal Article

Forest succession along a productivity gradient following fire exclusion

Numerous studies have documented significant change in conifer forests of the American West
following the cessation of recurrent fire at the end of the 19th century. But the successional dynamics that characterize different forested settings in the absence of fire remain poorly understood. This study reconstructs structural and...

Author(s): James D. Johnston
Year Published: 2017
Type: Document
Book or Chapter or Journal Article

Tamm Review: Management of mixed-severity fire regime forests in Oregon, Washington, and Northern California
www.nrfirescience.org/resource/13976
Increasingly, objectives for forests with moderate- or mixed-severity fire regimes are to restore successional diversity that are resistant and resilient to current and future stressors. Maintaining native species and characteristic processes requires this successional diversity, but methods to achieve it are poorly...

Year Published: 2016
Type: Document
Book or Chapter or Journal Article, Synthesis

Achievable future conditions as a framework for guiding forest conservation and management
www.nrfirescience.org/resource/13788
We contend that traditional approaches to forest conservation and management will be inadequate given the predicted scale of social-economic and biophysical changes in the 21st century. New approaches, focused on anticipating and guiding ecological responses to change, are urgently needed to ensure the full value of forest ecosystem...

Author(s): Stephen W. Golladay, Katherine L. Martin, James M. Vose, David N. Wear, Alan P. Covich, Richard J. Hobbs, Kier D. Klepzig, Gene E. Likens, Robert J. Naiman, Allan W. Shearer
Year Published: 2016
Type: Document
Book or Chapter or Journal Article, Synthesis

Temperate forest health in an era of emerging megadisturbance
www.nrfirescience.org/resource/13722
Although disturbances such as fire and native insects can contribute to natural dynamics of forest health, exceptional droughts, directly and in combination with other disturbance factors, are pushing some temperate forests beyond thresholds of sustainability. Interactions from increasing temperatures, drought, native insects and...

Author(s): Constance I. Millar, Nathan L. Stephenson
Year Published: 2015
Type: Document
Book or Chapter or Journal Article

Corrigendum to - Challenges of establishing big sagebrush (Artemisia tridentata) in rangeland restoration: Effects of herbicide, mowing,whole-community seeding, and sagebrush seed sources
www.nrfirescience.org/resource/18934
The loss of big sagebrush (Artemisia tridentata Nutt.) on sites disturbed by fire has motivated
restoration seeding and planting efforts. However, the resulting sagebrush establishment is often lower than desired, especially in dry areas. Sagebrush establishment may be increased by addressing factors such as seed source and...

Author(s): Martha M. Brabec, Matthew J. Germino, Douglas J. Shinneman, David S. Pilliod, Susan K. McIlroy, Robert S. Arkle
Year Published: 2015
Type: Document
Book or Chapter or Journal Article

Vegetation response after post-fire mulching and native grass seeding
www.nrfirescience.org/resource/15317
Post-fire mulch and seeding treatments, often applied on steep, severely burned slopes immediately after large wildfires, are meant to reduce the potential of erosion and establishment of invasive plants, especially non-native plants, that could threaten values at risk. However, the effects of these treatments on native vegetation...

Author(s): Penelope Morgan, Marshell Moy, Christine A. Droske, Leigh B. Lentile, Sarah A. Lewis, Peter R. Robichaud, Andrew T. Hudak
Year Published: 2014
Type: Document
Book or Chapter or Journal Article

Using resistance and resilience concepts to reduce impacts of invasive annual grasses and altered fire regimes on the sagebrush ecosystem and greater sage-grouse: a strategic multi-scale approach
www.nrfirescience.org/resource/12989
This Report provides a strategic approach for conservation of sagebrush ecosystems and Greater Sage-Grouse (sage-grouse) that focuses specifically on habitat threats caused by invasive annual grasses and altered fire regimes. It uses information on factors that influence (1) sagebrush ecosystem resilience to disturbance and...

Author(s): Jeanne C. Chambers, David A. Pyke, Jeremy D. Maestas, Michael L. Pellant, Chad S. Boyd, Steven B. Campbell, Shawn Espinosa, Douglas W. Havlina, Kenneth E. Mayer, Amarina Wuenschel
Year Published: 2014
Type: Document
Management or Planning Document

Climate change and United States forests
www.nrfirescience.org/resource/12393
This volume offers a scientific assessment of the effects of climatic variability and change on forest resources in the United States. Derived from a report that provides technical input to the 2013 U.S. Global Change Research Program National Climate Assessment, the book serves as a framework for managing U.S. forest resources in...

Author(s): David L. Peterson, James M. Vose, Toral Patel-Weynand
Year Published: 2014
Type: Document
Book or Chapter or Journal Article

The merits of prescribed fire outweigh potential carbon emission effects
www.nrfirescience.org/resource/12426
While North American ecosystems vary widely in their ecology and natural historical fire regimes, they are unified in benefitting from prescribed fire when judiciously applied with the goal of maintaining and restoring native ecosystem composition, structure, and function. On a modern landscape in which
historical fire regimes...
Author(s): Association for Fire Ecology, International Association of Wildland Fire, Tall Timbers Research Station, The Nature Conservancy
Year Published: 2013
Type: Document
Technical Report or White Paper

Effects of climatic variability and change on forest ecosystems: a comprehensive science synthesis for the U.S. forest sector
www.nrfirescience.org/resource/12567
This report is a scientific assessment of the current condition and likely future condition of forest resources in the United States relative to climatic variability and change. It serves as the U.S. Forest Service forest sector technical report for the National Climate Assessment and includes descriptions of key regional issues and...
Year Published: 2012
Type: Document
Synthesis, Technical Report or White Paper

What are Plants Doing and When? Using Plant Phenology to Promote Sustainable Natural Resources Management
www.nrfirescience.org/resource/18955
Climate change models for the northern Rocky Mountains predict changes in temperature and water availability that in turn will alter vegetation. Changes include timing of plant life-history events, or phenology, such as green-up, flowering and senescence, and shifts in species composition. Moreover, climate changes may favor...
Author(s): Geneva W. Chong, Leslie A. Allen
Year Published: 2012
Type: Document
Research Brief or Fact Sheet

The ecology of mixed severity fire regimes in Washington, Oregon, and Northern California
www.nrfirescience.org/resource/13580
Forests characterized by mixed-severity fires occupy a broad moisture gradient between lower elevation forests typified by low-severity fires and higher elevation forests in which high-severity, stand replacing fires are the norm. Mixed-severity forest types are poorly documented and little understood but likely occupy significant...
Author(s): David A. Perry, Paul F. Hessburg, Carl N. Skinner, Thomas A. Spies, Scott L. Stephens, Alan H. Taylor, Jerry F. Franklin, Brenda McComb, Gregg M. Riegel
Year Published: 2011
Type: Document
Book or Chapter or Journal Article

Fire ecology in Rocky Mountain landscapes
www.nrfirescience.org/resource/15378
Fire Ecology in Rocky Mountain Landscapes brings a century of scientific research to bear on improving the relationship between people and fire. In recent years, some scientists have argued that current patterns of fire are significantly different from historical patterns, and that landscapes should be managed with an eye toward...
Author(s): William L. Baker
Year Published: 2009
Type: Document
Landscape heterogeneity following large fires: insights from Yellowstone National Park, USA
www.nrfirescience.org/resource/8198
We characterised the remarkable heterogeneity following the large, severe fires of 1988 in Yellowstone National Park (YNP), in the northern Rocky Mountains, Wyoming, USA, by focussing on spatial variation in post-fire structure, composition and ecosystem function at broad, meso, and fine scales.
Ecological heterogeneity at multiple...
Author(s): Tania L. Schoennagel, Erica A. H. Smithwick, Monica G. Turner
Year Published: 2008
Type: Document
Book or Chapter or Journal Article

Carbon cycling at the landscape scale: the effect of changes in climate and fire frequency on age distribution, stand structure, and net ecosystem production - Final Report to the Joint Fire Science Program
www.nrfirescience.org/resource/11151
We are working in Yellowstone National Park to determine how initial post-fire structural heterogeneity controls carbon dynamics over the full cycle of individual forest stands, and how climate-mediated changes in the fire regime could potentially alter the behavior of the entire Yellowstone ecosystem as a net sink or net source in...
Author(s): Michael G. Ryan, Daniel M. Kashian, Erica A. H. Smithwick, William H. Romme, Monica G. Turner, Daniel B. Tinker
Year Published: 2005
Type: Document
Technical Report or White Paper

Sagebrush steppe and pinyon-juniper ecosystems - effects of changing fire regimes, increased fuel loads, and invasive species - Final Report to the Joint Fire Science Program
www.nrfirescience.org/resource/11152
Pinyon-juniper woodlands and Wyoming big sagebrush ecosystems have undergone major changes in vegetation structure and composition since settlement by European Americans. These changes are resulting in dramatic shifts in fire frequency, size and severity. Effective management of these systems has been hindered by lack of information...
Year Published: 2005
Type: Document
Technical Report or White Paper

Mapping the cheatgrass-caused departure from historical natural fire regimes in the Great Basin, USA
www.nrfirescience.org/resource/11490
Cheatgrass (Bromus tectorum) is an exotic grass that has increased fire hazard on millions of square kilometers of semi-arid rangelands in the western United States. Cheatgrass aggressively out competes native vegetation after fire and significantly enhances fire size and frequency. To evaluate the effect of cheatgrass on historical...
Author(s): James P. Menakis, Dianne Osborne, Melanie Miller
Year Published: 2003
Type: Document
Comparing historic and modern forests on the Bitterroot Front

A study was initiated in 1995 to measure landscape changes in forest structures between 1900 and 1995. A systematic sampling system was used to collect data on three forested faces on the Bitterroot Front. Over 1,200 tree cores were taken on 216 plots between the elevation range of 4,500 to 7,500 feet. Historic forests were...

Author(s): Michael G. Hartwell, Paul B. Alaback, Stephen F. Arno
Year Published: 2000
Type: Document
Conference Proceedings

Miller Creek: ecosystem recovery in a western Montana forest 30 years after prescribed burning and wildfire

Thirty years ago the effects of timber harvest, prescribed burning, and wildfire were investigated in a western larch/Douglas-fir forest on the Flathead National Forest in western Montana. The original study was designed to investigate the effects of prescribed burning on soil physical and biological properties, and on subsequent...

Author(s): Jonalea R. Tonn, Martin F. Jurgensen, G. D. Mroz, Deborah S. Page-Dumroese
Year Published: 2000
Type: Document
Conference Proceedings

Yellowstone fires: a decade later

Atop a ridge in Yellowstone National Park in 1984, a freak summer wind—perhaps a tornado or a downburst from a thunderstorm—leveled an ancient lodge-pole pine forest, piling up a head-high maze of logs. In the notorious summer of 1988, when wildfires burned one-third of the park, a fire front swept across the same ridge,...

Author(s): Y. Baskin
Year Published: 1999
Type: Document
Book or Chapter or Journal Article

Western national forests: a cohesive strategy is needed to address catastrophic wildfire threats

National forests of the dry, interior portion of the western United States that are managed by the Department of Agriculture’s Forest Service have undergone significant changes over the last century and a half, becoming much denser, with fewer large trees and many more small, tightly spaced trees and underbrush. These changes have...

Author(s): United States General Accounting Office
Year Published: 1999
Type: Document
Technical Report or White Paper

Riparian vegetation dynamics in relation to channel shifting and fire

The riparian vegetation along the Bighorn River in Wyoming forms a complex mosaic comprised of
cottonwood (Populus deltoides) groves, meadows, marshes, and several kinds of shrubland. Changes in the riparian mosaic during the last 50 years were reconstructed using tree ring analysis and aerial photos taken over the river in 1938,...

Author(s): Y. Akashi, Dennis H. Knight
Year Published: 1988
Type: Document
Conference Proceedings

Effects of disturbance frequency on stream benthic community structure in relation to canopy cover and season
www.nrfirescience.org/resource/18645
Field experiments were conducted to examine the effects of disturbance frequency on invertebrates and periphyton colonizing bricks in a third order Rocky Mountain (USA) stream. After an initial colonization period (30 days), sets of bricks were turned over at intervals of 0, 3, 9, 27, or 54 days. Invertebrate species richness and...

Author(s): Christopher T. Robinson, G. Wayne Minshall
Year Published: 1986
Type: Document
Book or Chapter or Journal Article