A JFSP Fire Science Exchange Network
Bringing People Together & Sharing Knowledge in the Northern Rockies

Unraveling the Complexity of Mixed Severity Fire Regimes: New Insights From Three Rocky Mountain Ecosystems


Mixed severity fire regime systems may be the most widely distributed and yet poorly understood fire regime type in western North America. This incongruity results from the diversity of forest types and fire regime attributes that are encompassed by the mixed-severity fire regime concept, combined with significant methodological challenges to their study that have resulted in persistent information gaps.

Scroll down for webinar recording.

In this webinar, Dr. Cameron Naficy presented findings from a synthesis of multiple projects conducted in 3 unique mixed-severity ecosystems from the Rocky Mountains of the U.S. and Canada, including: low elevation pure Douglas-fir forests of the Greater Yellowstone Ecosystem (Gallatin National Forest, Montana, U.S.), dry and moist mixed-conifer forests of the Glacier/Northern Continental Divide Ecosystem (Flathead National Forest, Montana, U.S.), and prairie ecotone lodgepole pine-aspen forests of the southwestern Alberta Foothills (Province of Alberta, Canada). He reviewed a new reconstruction method his research group developed that combines extensive dendroecological plot networks and detailed forest structure mapping from high-resolution historical aerial imagery. The method provides improved spatio-temporal inferences about the historical fire regime and the resulting vegetation conditions over large landscapes. Using these data, he described the spatial and temporal patterns of fire frequency and severity for each study ecosystem, the fire-mediated stand dynamics and vegetation conditions that characterized each ecosystem, and some novel resilience mechanisms and ecological surprises associated with the mixed-severity fire regime model. This project demonstrates how historical data can be used to move beyond simple summaries of historical fire regime attributes and landscape condition (e.g. mean fire frequency, historical range of variability of structural conditions) by using historical data to reveal fundamental fire regime processes, drivers, and ecological outcomes.

Webinar Recording


To stay informed of upcoming events, new resources, and current tools relevant to the Northern Rockies and beyond, sign up to receive the Northern Rockies Fire Science Newsletter