Landscape-scale vegetation recovery trends from Landsat time series analysis

Benjamin C. Bright¹*, Andrew T. Hudak¹, Robert E. Kennedy², Justin D. Braaten², Azad Henareh Khalyani³

¹USDA Forest Service, Rocky Mountain Research Station, Forestry Sciences Laboratory, Moscow, ID ²Oregon State University, College of Earth, Ocean, and Atmospheric Sciences, Corvallis, OR ³Colorado State University, Natural Resource Ecology Laboratory, Fort Collins, CO *benjamincbright@fs.fed.us

Outline

- Research questions
- Methods
 - o Study areas
 - Landsat time series analysis
 - Geographic raster data processing
- Results
 - Satellite-derived vegetation recovery following fire
 - Variables that explain variation in long-term post-fire vegetation recovery
- Conclusions

School burn, Washington

Research questions

- How do rates of vegetation recovery vary over time?
- How quickly do fire patches appear to return to prefire spectral conidition?
- How do pre-fire condition, burn severity, and climate affect recovery?

Stratification

- All study areas are part of a larger project; stratification done to locate field plots
- For this analysis, final stratification rasters were used for patch analysis

Hayman burn, Colorado

Landsat time series data

- LandTrendr Landsat based detection of trends in disturbance and recovery algorithm (Kennedy et al., 2010)
- Input: Annual Landsat NBR composites from 1984-2016
- Output: Trajectories describing trends for each 30-m pixel
- We used trends fit from Normalized Burn Ratio (NBR) images
- Interested in NBR recovery following fire

Landsat time series data

- LandTrendr Landsat based detection of trends in disturbance and recovery algorithm (Kennedy et al., 2010)
- Input: Annual Landsat NBR composites from 1984-2016
- Output: Trajectories describing trends for each 30-m pixel
- We used trends fit from Normalized Burn Ratio (NBR) images
- Interested in NBR recovery following fire

What is NBR?

- Normalized Burn Ratio
- (Landsat Band 4 Landsat Band 7) / (Landsat Band 4 + Landsat Band 7)
- Decrease in NBR indicates disturbance, increase indicates recovery
- Differenced NBR used as an indicator of burn severity

Source: US Forest Service

Climate, topographic, and distance-to-unburn rasters

Fine-scale (30-m) climate variable grids created, post-fire climate anomalies calculated

Digital elevation derivatives such as slope generated with ERDAS IMAGINE tool (Ruefenacht)

Distance-to-unburn rasters generated in ArcMap, based on MTBS data

Raster processing

- For each area, all rasters combined into image stacks with identical projections, origins, and resolutions
- Zonal means calculated for each patch
- Processing done in ArcMap and R ('raster' package)
- NBR time series showing vegetation recovery explored
- Random forest modeling used to find variables important to vegetation recovery

Hayman burn, Colorado

We defined percent recovery as NBR recovery magnitude (4) divided by NBR disturbance magnitude (1) * 100

From Bright et al. (2014) IEEE J-STARS

Egley burn, Oregon

Fire

Year

Year

NBR recovery averaged 33-70% nine years post-fire, and averaged 42-77% 13 years post-fire

Burn	Most important variables			Percent variance explained
Egley, Oregon	Pre-fire NBR	Winter min. temp.	Precipitation	49
Hayman, Colorado	Pre-fire NBR	Winter min. temp.	Summer max. temp.	43
Jasper, South Dakota	Pre-fire NBR	Winter min. temp.	Precipitation	45
School, Washington	Pre-fire NBR	Winter min. temp.		62
Cascade, East Zone, Idaho	Precipitation	Mean annual temp.	Summer max. temp.	33
Black Mtn, Cooney Ridge, MT	Pre-fire NBR	Summer precip.	Summer max. temp.	53
Wedge Canyon, Robert, MT	Pre-fire NBR	Winter min. temp.	Precipitation	65
Old, Grand Prix, CA	Pre-fire NBR	Winter min. temp.	Summer max. temp.	38

Pre-fire vegetation condition usually important

Burn	Most important variables			Percent variance explained
Egley, Oregon	Pre-fire NBR	Winter min. temp.	Precipitation	49
Hayman, Colorado	Pre-fire NBR	Winter min. temp.	Summer max. temp.	43
Jasper, South Dakota	Pre-fire NBR	Winter min. temp.	Precipitation	45
School, Washington	Pre-fire NBR	Winter min. temp.		62
Cascade, East Zone, Idaho	Precipitation	Mean annual temp.	Summer max. temp.	33
Black Mtn, Cooney Ridge, MT	Pre-fire NBR	Summer precip.	Summer max. temp.	53
Wedge Canyon, Robert, MT	Pre-fire NBR	Winter min. temp.	Precipitation	65
Old, Grand Prix, CA	Pre-fire NBR	Winter min. temp.	Summer max. temp.	38
Pro-fire vegetation	n Winte	r minimum		

Pre-fire vegetation condition usually important Winter minimum temperatues important

Burn	Most important variables			Percent variance explained
Egley, Oregon	Pre-fire NBR	Winter min. temp.	Precipitation	49
Hayman, Colorado	Pre-fire NBR	Winter min. temp.	Summer max. temp.	43
Jasper, South Dakota	Pre-fire NBR	Winter min. temp.	Precipitation	45
School, Washington	Pre-fire NBR	Winter min. temp.		62
Cascade, East Zone, Idaho	Precipitation	Mean annual temp.	Summer max. temp.	33
Black Mtn, Cooney Ridge, MT	Pre-fire NBR	Summer precip.	Summer max. temp.	53
Wedge Canyon, Robert, MT	Pre-fire NBR	Winter min. temp.	Precipitation	65
Old, Grand Prix, CA	Pre-fire NBR	Winter min. temp.	Summer max. temp.	38
Pre-fire vegetatior condition usually	n Winte tempe	r minimum eratues	Summer max temperatures	imum

important

important

Burn	М	ost important	variables	Percent variance explained
Egley, Oregon	Pre-fire NBR	Winter min. temp.	Precipitation	49
Hayman, Colorado	Pre-fire NBR	Winter min. temp.	Summer max. temp.	43
Jasper, South Dakota	Pre-fire NBR	Winter min. temp.	Precipitation	45
School, Washington	Pre-fire NBR	Winter min. temp.		62
Cascade, East Zone, Idaho	Precipitation	Mean annual temp.	Summer max. temp.	33
Black Mtn, Cooney Ridge, MT	Pre-fire NBR	Summer precip.	Summer max. temp.	53
Wedge Canyon, Robert, MT	Pre-fire NBR	Winter min. temp.	Precipitation	65
Old, Grand Prix, CA	Pre-fire NBR	Winter min. temp.	Summer max. temp.	38
Pre-fire vegetatior condition usually	n Winte	r minimum eratues	Summer max temperatures	imum Precipitation important

Conclusions

- Landsat time series analysis, specifically LandTrendr, can be used to detect and map vegetation recovery trends following wildfire
- More low and moderate severity patches have recovered to pre-fire NBR
- However, high severity patches are generally recovering at a faster rate
- Fire severity important to long-term NBR recovery
- Climate variables explain variation in NBR recovery

