Wildfire Risk in the Northern Rockies, Southwest & Northwest Geographic Areas

Erin Noonan-Wright

Fire Center, University of Montana & Wildland Fire Management Research Development & Application Missoula, Montana

Carl Seielstad

Fire Center, University of Montana & Associate Professor- Forest Resources Management

Wilderness Fire Management Choteau, MT July 9, 2019

Outline

- Introduce how land managers make decisions on wildland fires: the Wildland Fire Decision Support System (WFDSS)
- Introduce how land managers make an initial assessment of risk on wildland fires
- Show how risk is different spatially for the U.S. with a focus on the Northwest, Northern Rockies and Southwest
- 4. The role of barriers for the Southwest; how barriers can provide more flexibility in decision making

Risk

The Wildland Fire Decision Support System

Wildland Fire Decision Suppor	System										
lome											
About WFDSS	Welcome!										
What's New In WFDSS	Million & Proc. Decision Constants										
Training Resources	Wildiama rife Decision Support System										
NWCG Training WFDSS	Welcome to the Wildland Hire Decision Support System (WHDSS)!										
Courses	Note: Click WFDSS Known Issues to see the list of the most current issues and suggested workarounds for WFDSS.										
Data	This system assists fire managers and analysts in making strategic and tactical decisions for fire incidents. It has replaced the WFSA (Wildland Fire Situation Analysis), Wildland Fire Implementation Plan (WFIP), and Long-Term Implementation Plan (LTIP) processes with a single										
Related References	process that is easier to use, more intuitive, linear, scalable, and progressively responsive to changing fire complexity.										
WFDSS Help	WFDSS integrates the various applications used to manage incidents into a single system, which streamlines the analysis and reporting processes.										
Sign In to Production	WFDSS provides the following advantages over previous systems: Combines desiton anolizations for fire modeling into a web-based system for easier data acquisition										
Sign In to Training											
Request Account	 Browids an approximation in the meaning whether the accurately document their decision making process by allowing results of analyses to be attached to the decision point and included in the final incident report. 										
FDSS Help Desk	 Provides an easy way for the managers and analysis to accurately document their decision-making process by allowing results or analysis to be attached to the decision point, and included in the linal includent report. 										
<u>:ps://iia-hd.peckham-</u>	Provides one decision process and documentation system for all types of wildland fires.										
dd WFDSS to subject line)	 Is a web-based application for easier sharing of analyses and reports across all levels of the federal wildland fire organization. 										
866.224.7677 or	Introduces economic principles into the fire decision process.										
516-323-1667	Before you log into WFDSS, make sure you read and understand the system Rules of Behavior.										
alysis & Decision	WFDSS follows an analytic deliberative process for decision making. The following graphic displays this process. Click here for further information.										
209-472-9107	Figure 1: Risk Informed Decision Process and WFDSS										
200 475 0107	Risk Informed Decision Process and WFDSS Deliberative Risk Analysis Erabation, Lessons Leaned, and Fredheck										

Last updated on 5/1/2018 2:26:41 PM.

Relative Risk Assessment

- Users rate three sub elements each for Values, Hazard, and Probability (High, Mod, or Low except for Probability)* * Seasonal Severity has 5 categories including Very High and Extreme
- The three main elements (Values, Hazard, Probability) derived from the user-rated sub-elements are used to produce the final relative risk rating
- Users also provide plain text Notes to support their ratings

and the GIS user commu

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community

LSH, HEIKE, Gailli

Methods

- Coding
- Summarize the notes by dividing the what land managers talk about into main subject areas

• 20% stratified random sample of the fires from the SW (n=149)

Percent Frequency of Codes by Probability Rating, Southwest Geographic Area

Barriers from Previous Fires in the Southwest

- The Southwest references previous wildfires for 41 out of 149 total fires (28%)
- More for low relative risk fires (n=19).
- Barriers from previous wildfires are mentioned along with references to the monsoon (54%), unnatural barriers (46%), presence of precipitation (45%), and low fire behavior (41%)

For example,

"The fire area has not burned in recent history, but is surrounded by numerous areas that have burned in wildfires or prescribed fires in the last 5 years." - 1293782 Southwest Low Relative Risk fire

"...most threats to private lands to the Northeast were mitigated by the Eagle Rock fire in 2010." - 1556389 Southwest low RR

Ē

Percent of Fires

The Link Between Fire Management Strategies to Barriers in the Southwest

Conclusion

Proposed Conceptual Model of Controls on Risk & Strategy Conceptual Model applied to the Southwest

Evidence that past management decisions to create barriers (i.e. use wildfire and prescribed fires) is allowing for greater management space to use fire in 2010 – 2017 in the Southwest

Ę

Relevance for the Northern Rockies

Hypothesis:

In areas with a high number of fire scars (like the Bob Marshall Wilderness Area), fire barriers working in conjunction with other controls (favorable weather, lower fuel loads, mild fire behavior) support more decision space to use fire in some capacity.

Acknowledgements

 Funding from this project provided by the Wildland Fire Management RD&A

Wildland Fire Management RD&A

PTIONAL DENTER

SCARE FIRE AMAL

• Support for this project provided by the Fire Center, University of Montana

General Stats

	From WFDSS									FROM NIFC			
			Total (n)				Percen	t (%)		Total (n)			
Geographic Area	Fires	RRA	Days between Start and Contained Dates	Days between Start and Controlled Dates	Fires	RRA	More than 1 RRA/fire	Single Jurisdiction	WFDSS Incidents/ Total NIFC fires	Fires	Acres	Type 1 IMT	Type 2 IMT
Alaska	542	911	41	44.2	10.7	7.4	60.4	52.0	12.6	4,311	9,516,655	6	27
Eastern	84	222	12.2	31.3	1.7	1.8	83.8	89.3	0.1	83 <i>,</i> 009	848,657	5	39
Great Basin	977	2003	15.3	20.4	19.2	16.3	69.9	78.0	5.6	17,344	7,307,807	25	143
Northern California	217	903	17.1	29.1	4.3	7.3	90.9	65.4	0.7	31,075	2,834,582	30	79
Northern Rockies	802	1562	36	43.7	15.8	12.7	68.5	77.4	3.5	23,081	4,589,162	35	122
Northwest	649	1813	28.5	40.4	12.8	14.7	84.8	67.3	2.5	26,130	7,315,057	60	228
Rocky Mountain	478	1183	15	23.9	9.4	9.6	77.9	69.7	1.8	25 <i>,</i> 909	3,850,664	23	70
Southern California	304	1313	21.6	32	6.0	10.7	91.3	61.2	0.9	34,867	2,161,433	28	79
Southern	304	799	12.7	22.4	6.0	6.5	81.7	76.3	0.1	260,353	10,279,050	33	60
Southwest	730	1615	17.2	24.8	14.4	13.1	74.6	81.6	3.2	22,844	5,050,397	43	79
U.S.	5087	12324	22.8	31	100.0	100.0	77.4	72.1	1.0	528,923	53,753,464	288	926

Conclusion

Fig X. Conceptual proposed model that summarizes the factors that allow for low and moderate relative risk and Other Strategies in the Southwest.

Conclusion

Fig X. Conceptual proposed model that summarizes how elements of risk influence the chosen strategy; and how strategy influences elements of risk

Cluster Analysis

Percent Frequencies used for the Cluster Analysis Red = high percentages, Blue = low percentages

Rel risk	Values, Hazard, Prob	val	haz	prob	US	Great Basin	Rocky Mountain	Southern	Alaska	Northern Rockies	Northern California	Northwest	Southern California	Eastern	Southwest
Н	ннн	Н	Н	Н	0.129	0.117	0.115	0.112	0.077	0.132	0.184	0.227	0.181	0.048	0.082
Н	МНН	М	Н	Н	0.057	0.034	0.044	0.069	0.063	0.074	0.088	0.106	0.049	0.024	0.021
Н	HHL	Н	Н	L	0.004	0.003	0.002	0.01	0	0.001	0.014	0.005	0.003	0	0.005
Н	HHM	Н	Н	М	0.044	0.057	0.054	0.046	0.024	0.017	0.06	0.068	0.066	0	0.033
Н	MHM	М	Н	М	0.033	0.028	0.025	0.056	0.037	0.04	0.028	0.031	0.043	0.024	0.023
Н	HLH	Н	L	Н	0.001	0	0	0	0.002	0.001	0	0.002	0	0	0.001
Н	HMH	Н	М	Н	0.024	0.023	0.017	0.036	0.028	0.021	0.046	0.034	0.03	0	0.014
Н	MMH	М	М	Н	0.04	0.025	0.042	0.023	0.063	0.064	0.037	0.032	0.033	0.06	0.03
Н	HMM	Н	М	М	0.045	0.066	0.054	0.039	0.03	0.022	0.028	0.066	0.059	0.048	0.03
L	HLL	Н	L	L	0.004	0.002	0.002	0.007	0.004	0.001	0.009	0.006	0.003	0.012	0.007
L	LLL	L	L	L	0.083	0.099	0.09	0.063	0.054	0.05	0.078	0.049	0.036	0.155	0.164
L	MLL	М	L	L	0.028	0.026	0.029	0.03	0.011	0.012	0.014	0.011	0.026	0.071	0.071
L	LLM	L	L	М	0.101	0.097	0.077	0.076	0.135	0.155	0.074	0.072	0.138	0.083	0.071
L	LML	L	М	L	0.028	0.035	0.021	0.039	0.017	0.01	0	0.014	0.013	0.048	0.07
М	LHH	L	Н	н	0.015	0.012	0.008	0.016	0.028	0.014	0.032	0.015	0.003	0.036	0.01
М	LHL	L	Н	L	0.001	0	0.002	0.003	0.002	0	0.005	0	0	0.012	0.001
М	MHL	М	Н	L	0.004	0.006	0.006	0.003	0.002	0.001	0.005	0	0.003	0	0.007
М	LHM	L	Н	М	0.014	0.013	0.015	0.02	0.03	0.012	0.009	0.012	0.007	0	0.007
М	LLH	L	L	Н	0.009	0.005	0.004	0.01	0.004	0.02	0	0.006	0.01	0.024	0.011
М	MLH	М	L	Н	0.006	0.003	0.002	0.007	0.004	0.006	0.009	0.003	0.02	0.024	0.007
М	HLM	Н	L	М	0.011	0.011	0.008	0.003	0.018	0.012	0.014	0.014	0.003	0	0.01
М	MLM	М	L	М	0.042	0.05	0.046	0.016	0.039	0.042	0.037	0.04	0.033	0.107	0.041
М	LMH	L	М	Н	0.022	0.017	0.019	0.026	0.024	0.036	0	0.02	0.02	0.024	0.021
М	HML	Н	М	L	0.006	0.006	0.01	0.007	0.004	0.002	0.014	0.002	0.007	0	0.01
М	MML	М	М	L	0.02	0.015	0.019	0.033	0.007	0.012	0.009	0.009	0.02	0.012	0.053
М	LMM	L	М	М	0.1	0.097	0.119	0.115	0.173	0.113	0.078	0.059	0.063	0.06	0.081
М	MMM	М	М	М	0.131	0.153	0.167	0.135	0.124	0.126	0.129	0.097	0.132	0.131	0.119

Cluster Analysis using squared Euclidean distance with Ward's method

Cluster Dendrogram

element

level high low mod

Geographic Area Deviation from Chance: Main Elements

element

Deviation from Chance: Sub-elements

ss = seasonal severity, bar = barriers, tos = time of season; conc = concern, threat, res = resources; pot = potential, fbeh = fire behavior, fuel = fuel condition

High RR

Relative Risk Deviation from Chance

level high low mod

Methods

- 1. Tabulate Observed Raw & Percent Frequencies
- 2. Tabulate Expected
- 3. Compute Preference Metric

$$Preference\ metric = \left(\frac{\%\ observed}{\%\ expected}\right) - 1$$

4. Compute Cluster Analysis using Ward Linkage

OLow

Low / Late O

Expected Frequencies (Chance)

	Chance
High Relative Risk	47.2%
Moderate Relative Risk	45.8%
Low Relative Risk	7.0%
High Values	33.3%
Mod Values	48.1%
Low Values	18.5%
High Hazard	33.3%
Mod Hazard	48.1%
Low Hazard	18.5%
High Probability	35.6%
Mod Probability	44.4%
Low Probability	20.0%

Each sub-element has a 33% chance of being selected except for Seasonal Severity which has a 20% chance of being selected.

Figure by Hans Fieldler, IBM & R. Seli, Retired USFS, from Noonan-Wright, E., Opperman, T.S. et al. 2011 Developing the US Wildland Fire Decision Support System, Journal of Combustion, Vol 2011.

Barriers are mentioned often in the Northwest Notes

Percent Frequency of Codes by Probability Rating, Northwest Geographic Area

Sample = 133 fires

Sample = 149 fires

